Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁(yè) >> 發(fā)行征訂 >> 征訂方式

遠(yuǎn)海岸海上風(fēng)電輸電方式技術(shù)經(jīng)濟(jì)分析

來(lái)源:電工電氣發(fā)布時(shí)間:2024-02-01 13:01瀏覽次數(shù):280

遠(yuǎn)海岸海上風(fēng)電輸電方式技術(shù)經(jīng)濟(jì)分析

吳倩1,薄鑫1,吳楊勇2,鄭宇超1
(1 國(guó)網(wǎng)江蘇省電力有限公司經(jīng)濟(jì)技術(shù)研究院,江蘇 南京 210008;
2 國(guó)網(wǎng)安徽省電力有限公司祁門(mén)縣供電公司,安徽 祁門(mén) 245600)
 
    摘 要:全球海上風(fēng)電呈現(xiàn)遠(yuǎn)海化、規(guī)?;?、集群化趨勢(shì),遠(yuǎn)海風(fēng)電輸電方式選擇至關(guān)重要??紤]海上風(fēng)電場(chǎng)規(guī)模、離岸距離等因素,采用等年值法,結(jié)合 14 種遠(yuǎn)海風(fēng)電典型場(chǎng)景,從技術(shù)性、經(jīng)濟(jì)性兩個(gè)維度,對(duì)高壓工頻交流、柔性直流、低頻交流等 3 種海上風(fēng)電輸電方式進(jìn)行對(duì)比分析。研究表明,工頻交流輸電技術(shù)在中小容量、中遠(yuǎn)距離海上風(fēng)電送出應(yīng)用場(chǎng)景具有技術(shù)、經(jīng)濟(jì)優(yōu)勢(shì),柔性直流輸電技術(shù)應(yīng)用于大容量、遠(yuǎn)距離海上風(fēng)電送出場(chǎng)景時(shí)經(jīng)濟(jì)優(yōu)勢(shì)凸顯。同時(shí),對(duì) 35、66 kV 交流匯集-柔直送出兩種方案進(jìn)行比較,指出 66 kV 匯集無(wú)海上升壓站- 柔直方案更具經(jīng)濟(jì)性,進(jìn)一步縮短了交直流輸電方式等價(jià)離,并給出典型場(chǎng)景海上風(fēng)電輸電方式選擇建議,提出了遠(yuǎn)海岸海上風(fēng)電送出方式選擇指導(dǎo)意見(jiàn)。
    關(guān)鍵詞: 遠(yuǎn)海岸;海上風(fēng)電;高壓工頻交流;柔性直流;低頻交流;輸電方式;技術(shù)經(jīng)濟(jì)分析
    中圖分類號(hào):TM614 ;TM722     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2024)01-0001-09
 
Techno-Economic Analysis of Far Coast Offshore
Wind Power Transmission Modes
 
WU Qian1, BO Xin1, WU Yang-yong2, ZHENG Yu-chao1
(1 State Grid Jiangsu Electric Power Co., Ltd. Economic Research Institute, Nanjing 210008, China;
2 State Grid Anhui Electric Power Co., Ltd. Qimen County Electric Power Supply Company, Qimen 245600, China)
 
    Abstract: The global offshore wind power shows the trend of far coast, large-scale and cluster, and the choice of offshore wind power transmission mode is very important. Considering the factors such as the scale of offshore wind farms and the offshore distance, this paper adopts the equal annual value method and combines 14 typical scenarios of offshore wind power. From the two dimensions of technology and economy, makes a comparative analysis of three types of offshore wind power transmission methods, including high-voltage power frequency AC, flexible DC and low-frequency AC. The results show that the power frequency AC transmission technology has technical and economic advantages in the application scenarios of small and medium-capacity, medium- and long-distance offshore wind power transmission, and the economic advantages of flexible DC transmission technology are prominent when applied to large-capacity and long-distance offshore wind power transmission scenarios. At the same time, the comparison of the 35 and 66 kV AC convergence-flexible direct transmission schemes is carried out, and it is pointed out that the 66 kV convergence without oversea booster station-flexible direct transmission scheme is more economical, which further shortens the equivalent distance of AC and DC transmission modes.Then, suggestions on the selection of offshore wind power transmission methods in typical scenarios are given, and guidance on the selection of offshore wind power transmission methods in far coast is proposed.
    Key words: far coast; offshore wind power; high-voltage power frequency AC; flexible DC; low frequency AC; transmission mode; techno-economic analysis
 
參考文獻(xiàn)
[1] 劉吉臻, 馬利飛, 王慶華, 等. 海上風(fēng)電支撐我國(guó)能源轉(zhuǎn)型發(fā)展的思考[J] . 中國(guó)工程科學(xué),2021,23(1) :149-159.
[2] 時(shí)智勇,王彩霞,李瓊慧.“十四五”中國(guó)海上風(fēng)電發(fā)展關(guān)鍵問(wèn)題[J]. 中國(guó)電力,2020,53(7) :8-17.
[3] Global Wind Energy Council.Global Offshore Wind Report 2023[R].Brussels :Belgium,2023.
[4] 徐政. 海上風(fēng)電送出主要方案及其關(guān)鍵技術(shù)問(wèn)題[J] .電力系統(tǒng)自動(dòng)化,2022,46(21) :1-9.
[5] 蔡旭,楊仁炘,周劍橋,等. 海上風(fēng)電直流送出與并網(wǎng)技術(shù)綜述[J] . 電力系統(tǒng)自動(dòng)化,2021,45(21) :2-22.
[6] 李巖,馮俊杰,盧毓欣,等. 大容量遠(yuǎn)海風(fēng)電柔性直流送出關(guān)鍵技術(shù)與展望[J] . 高電壓技術(shù),2022,48(9) :3384-3393.
[7] 王鑫,王海云,王維慶. 大規(guī)模海上風(fēng)電場(chǎng)電力輸送方式研究[J]. 電測(cè)與儀表,2020,57(22) :55-62.
[8] 黃曉堯,謝瑞,裘鵬,等.遠(yuǎn)海風(fēng)電兩種送出方案的經(jīng)濟(jì)性評(píng)估[J].浙江電力,2022,41(7) :1-7.
[9] 黃明煌,王秀麗,劉沈全,等. 分頻輸電應(yīng)用于深遠(yuǎn)海風(fēng)電并網(wǎng)的技術(shù)經(jīng)濟(jì)性分析[J] . 電力系統(tǒng)自動(dòng)化,2019,43(5) :167-174.
[10] 劉景暉,萬(wàn)振東,李飛科. 大規(guī)模海上風(fēng)電場(chǎng)集群交直流輸電方式的等價(jià)距離研究[J] . 電力勘測(cè)設(shè)計(jì),2020(4) :1-5.
[11] 王秀麗,趙勃揚(yáng),鄭伊俊,等. 海上風(fēng)力發(fā)電及送出技術(shù)與就地制氫的發(fā)展概述[J] . 浙江電力,2021,40(10) :3-12.
[12] 劉衛(wèi)東,李奇南,王軒,等. 大規(guī)模海上風(fēng)電柔性直流輸電技術(shù)應(yīng)用現(xiàn)狀和展望[J] . 中國(guó)電力,2020,53(7) :55-71.
[13] 遲永寧,梁偉,張占奎,等. 大規(guī)模海上風(fēng)電輸電與并網(wǎng)關(guān)鍵技術(shù)研究綜述[J] . 中國(guó)電機(jī)工程學(xué)報(bào),2016,36(14) :3758-3771.
[14] 楊大業(yè),項(xiàng)祖濤,羅煦之,等. 永磁型風(fēng)機(jī)海上風(fēng)電送出系統(tǒng)甩負(fù)荷故障暫時(shí)過(guò)電壓影響因素分析[J]. 發(fā)電技術(shù),2022,43(1) :111-118.
[15] 吳倩,韓笑,葉昊亮,等. 海上風(fēng)電場(chǎng)經(jīng) 220 kV 交流海纜送出系統(tǒng)的無(wú)功配置方案[J]. 電力電容器與無(wú)功補(bǔ)償,2021,42(4) :22-30.
[16] YANG Bo, LIU Bingqiang, ZHOU Hongyu, et al.A critical survey of technologies of large offshore wind farm integration:summary ,advances, and perspectives[J].Protection andControl of Modern Power Systems,2022,7(1) :2-17.
[17] WU Sihang, QI Lei, JIA Wenxuan, et al.A Modular Multilevel Converter with Integrated Energy Dissipation Equipment for Offshore Wind VSCHVDC System[J].IEEE Transactions on Sustainable Energy,2021,13(1),353-362.
[18] LIU J , DONG D , ZHANG D . A hybrid modular multilevel converter family with higher power density and efficiency[J].IEEE Transactions on Power Electronics,2021,36(8) :9001-9014.
[19] 孟沛彧,向往,邸世民,等. 大規(guī)模海上風(fēng)電多電壓等級(jí)混合級(jí)聯(lián)直流送出系統(tǒng)[J] . 電力系統(tǒng)自動(dòng)化,2021,45(21) :120-128.
[20] 李彬彬,王寧,趙曉東,等. 適用于全直流海上風(fēng)電場(chǎng)的柔性換流高壓大容量直流變壓器[J]. 電力系統(tǒng)自動(dòng)化,2022,46(22) :129-141.
[21] 文衛(wèi)兵,趙崢,李明,等. 海上風(fēng)電柔性直流系統(tǒng)設(shè)計(jì)及工程應(yīng)用[J] . 全球能源互聯(lián)網(wǎng),2023,6(1) :1-9.
[22] 薄鑫,楊志超,宋杉,等. 海上風(fēng)電經(jīng)柔直送出系統(tǒng)受端交流故障聯(lián)合穿越控制策略[J] . 可再生能源,2022,40(10) :1396-1406.
[23] 王錫凡,劉沈全,宋卓彥,等. 分頻海上風(fēng)電系統(tǒng)的技術(shù)經(jīng)濟(jì)分析[J] . 電力系統(tǒng)自動(dòng)化,2015,39(3) :43-50.
[24] 唐英杰,張哲任,徐政. 基于有源型 M3C 矩陣變換器的海上風(fēng)電低頻送出方案[J] . 電力系統(tǒng)自動(dòng)化,2022,46(8) :113-122.
[25] 趙國(guó)亮,陳維江,鄧占鋒,等. 柔性低頻交流輸電關(guān)鍵技術(shù)及應(yīng)用[J] . 電力系統(tǒng)自動(dòng)化,2022,46(15) :1-10.
[26] 林進(jìn)鈿,倪曉軍,裘鵬. 柔性低頻交流輸電技術(shù)研究綜述[J]. 浙江電力,2021,40(10) :42-50.
[27] 羅魁, 郭劍波, 馬士聰, 等. 海上風(fēng)電并網(wǎng)可靠性分析及提升關(guān)鍵技術(shù)綜述[J] . 電網(wǎng)技術(shù),2022,46(10) :3691-3702.
[28] 王邦彥,王秀麗,王碧陽(yáng),等. 海上風(fēng)電分頻送出系統(tǒng)可靠性評(píng)估模型及方法[J] . 電網(wǎng)技術(shù),2022,46(8) :2899-2908.
[29] 宋冬然,梁梓昂,夏鄂,等. 風(fēng)電全生命周期成本建模與經(jīng)濟(jì)分析綜述[J] . 熱力發(fā)電,2023,52(3) :1-12.
[30] 呂杰,楊維稼,黃瑋,等.66 kV 交流接入海上換流站方案的技術(shù)經(jīng)濟(jì)性[J]. 中國(guó)電力,2020,53(7) :72-79.
[31] 曹善軍,王金雷,吳小釗,等. 海上風(fēng)電送出技術(shù)研究淺述[J]. 電工電氣,2020(9) :66-69.
[32] 蘇勻,馬小婷,李少華,等. 海上風(fēng)電送出交流故障穿越控制策略研究[J]. 電工電氣,2021(4) :11-16.