Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁 >> 發(fā)行征訂 >> 征訂方式

氫電混輸直流超導電纜研究進展及安全設計研究

來源:電工電氣發(fā)布時間:2024-04-07 14:07瀏覽次數(shù):166

氫電混輸直流超導電纜研究進展及安全設計研究

朱紅亮
(富通集團(天津)超導技術應用有限公司 天津市超導電纜應用重點實驗室,天津 300384)
 
    摘 要:超導氫電混合旨在實現(xiàn)液氫清潔能源和超導電力能源共同輸運,不僅可以節(jié)約冷卻成本,同時可以提升超導電纜通流能力,是實現(xiàn)超導電力大規(guī)模應用的有效技術手段。闡述了氫電混輸直流超導電纜研究進展,對超導電纜在液氫環(huán)境下的混輸結構設計方法進行了研究,并給出了安全設計原則與應急預案,為氫電混輸直流超導電纜優(yōu)化設計提供了參考。
    關鍵詞: 直流超導電纜;氫電混輸;熱絕緣;冷絕緣
    中圖分類號:TM757     文獻標識碼:A     文章編號:1007-3175(2024)03-0001-05
 
Research Progress and Safety Design of Hydrogen-Electric
Hybrid Transmission DC Superconducting Cables
 
ZHU Hong-liang
(Futong Group (Tianjin) Superconductor Technologies and Applications Co., Ltd. Tianjin Key
Laboratory of Superconducting Cable Applications, Tianjin 300384, China)
 
    Abstract: Superconducting hydrogen-electric hybrid aims to realize the joint transportation of liquid hydrogen clean energy and superconducting power energy, which can not only save cooling costs, but also improve the flow capacity of superconducting cables, and it is an effective technical means to realize the large-scale application of superconducting electricity. In this paper, the research progress of hydrogen-electric hybrid DC superconducting cable is expounded, the design method of superconducting cable mixed transportation structure in liquid hydrogen environment is studied, and the safety design principles and emergency plan are given, which provides a reference for the optimal design of hydrogen-electric hybrid DC superconducting cable.
    Key words: DC superconducting cable; hydrogen-electric hybrid transmission; thermal insulation; cold insulation
 
參考文獻
[1] 郭偉,唐人虎.2060 碳中和目標下的電力行業(yè)[J] .能源,2020(11) :19-26.
[2] 黃晶.中國 2060 年實現(xiàn)碳中和目標亟需強化科技支撐[J].可持續(xù)發(fā)展經(jīng)濟導刊,2020(10) :15-16.
[3] 張平祥,閆果,馮建情,等. 強電用超導材料的發(fā)展現(xiàn)狀與展望[J]. 中國工程科學,2023,25(1) :60-67.
[4] 嚴陸光,周孝信,甘子釗,等. 關于發(fā)展高溫超導輸電的建議[J]. 電工文摘,2015(1) :1-8.
[5] 肖立業(yè),林良真. 超導輸電技術發(fā)展現(xiàn)狀與趨勢[J] .電工技術學報,2015,30(7) :1-9.
[6] 朱紅亮,曹雨軍,夏芳敏,等. 高溫超導電纜制冷系統(tǒng)設計控制方案及試驗驗證[J] . 真空與低溫,2021,27(6) :543-548.
[7] 李繼春,張立永,曹雨軍,等. 冷絕緣高溫超導電纜循環(huán)冷卻系統(tǒng)設計及運行分析[J] . 低溫與超導,2020,48(2) :7-11.
[8] 楊天慧,信贏,李文鑫. 滿足電力與能源液體雙重輸送管道建設的超導材料需求和發(fā)展現(xiàn)狀[J]. 中國電機工程學報,2022,42(z1) :215-225.
[9] ISHIGOHKA T.A feasibility study on a world-wide-scale superconducting power transmission system [J].IEEE Transactions on Applied Superconductivity: A Publication of the IEEE Superconductivity Committee,1995,5(2) :949-952.
[10] GRANT P M.The supercable: Dual delivery of chemical and electric power[J].IEEE Transactions on Appiled Superconductivity,2005,15(2) :1810-1813.
[11] TREVISANI L, FABBRI M, NEGRINI F.Long-term scenarios for energy and environment: Energy from the desert with very large solar plants using liquid hydrogen and superconducting technologies[J].Fuel Processing Technology,2006,87(2) :157-161.
[12] TREVISANI L, FABBRI M, NEGRINI F.Long distance renewable-energy-sources power transmission using hydrogen-cooled MgB2 superconducting line[J].Cryogenics,2007,47(2) :113-120.
[13] YAMADA S, HISHINUMA Y, UEDE T, et al.Study on 1 GW class hybrid energy transfer line of hydrogen and electricity[J].Journal of Physics:Conference Series,2008,97(1) :012167.
[14] YAMADA S, HISHINUMA Y, UEDE T, et al.Conceptual design of 1 GW class hybrid energy transfer line of hydrogen and electricity[J].Journal of Physics: Conference Series,2010,234(3) :032064.
[15] 黃晟,翟雨佳,黃守道,等. 一種海上離網(wǎng)型超導風電制備液氫的方法及裝置:C N202210428868.6[P] .2023-07-19.
[16] NAKAYAMA T, YAGAI T, TSUDA M, et al.Micro power grid system with SMES and superconducting cable modules cooled by liquid hydrogen[J].IEEE Transactions on Applied Superconductivity,2009,19(3) :2062-2065.
[17] VYSOTSKY V S, NOSOVA A, TETISOVS S, et al.Hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable—First experimental proof of concept[J].IEEE Transactions on Applied Superconductivity,2013,23(3) :5400906.
[18] VYSOTSKY V S, BLAGOV E V, KOSTYUK V V, et al.New 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable: Development and test results[J].IEEE Transactions on Applied Superconductivity,2015,25(3) :5400205.
[19] KOSTYUK V V, BLAGOV E V, ANTYUKHOV I V, et al.Cryogenic design and test results of 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable[J].Cryogenics,2015,66 :34-42.
[20] 李振明,崔亞林,劉偉,等. 液氫溫區(qū)超導電纜本體設計與短樣試驗[J]. 低溫與超導,2018,46(1) :54-58.
[21] TAITO M,YASUYUKI S,MASAHIRO S, et al.Experiment and Simulation for Normal Zone Propagation of Multifilament MgB2 Superconducting Wire Cooled by Liquid Hydrogen[J].IEEE Transactions on Applied Superconductivity,2019,29(5) :1-6.
[22] 金建勛. 高溫超導電纜與輸電[M]. 北京:科學出版社,2021.
[23] 崔亞林. 液氫環(huán)境下超導電纜結構設計與性能分析研究[D]. 北京:北京交通大學,2017.
[24] 陳卓正,李華強,鐘力生. 聚丙烯層壓紙絕緣電纜發(fā)展現(xiàn)狀[J]. 絕緣材料,2022,55(11) :1-9.
[25] 趙瑞彬. 高臨界電流超導磁體結構優(yōu)化與安全運行分析[D]. 成都:四川師范大學,2022.