內(nèi)嵌式永磁同步電機矢量控制系統(tǒng)弱磁控制研究
趙新1,王海明2,趙彥輝3
(1 河南源網(wǎng)荷儲電氣研究院有限公司,河南 許昌 461000;
2 許繼集團有限公司,河南 許昌 461000;
3 國網(wǎng)烏魯木齊供電公司,新疆 烏魯木齊 830054)
摘 要:提高變槳電機的穩(wěn)態(tài)和動態(tài)控制性能,保證在不同風況及母線電壓跌落的情況下維持電機高速運行的穩(wěn)定性尤其重要。分析了內(nèi)嵌式永磁同步電機的模型及約束條件,結(jié)合永磁同步電機的應用特點,基于 SVPWM 的矢量控制與電壓外環(huán)的雙電流弱磁控制策略,設計了矢量控制和弱磁控制系統(tǒng)模型并進行了仿真?;谠摽刂葡到y(tǒng)模型搭建了實驗平臺,對不同直流母線電壓下矢量控制與弱磁控制的性能進行了對比測試和分析,驗證了模型設計的合理性,實現(xiàn)了擴速性能。目前,該控制系統(tǒng)已應用于風機變槳伺服控制系統(tǒng),具有較高應用價值。
關(guān)鍵詞: 內(nèi)嵌式永磁同步電機;矢量控制;弱磁控制;電壓外環(huán)
中圖分類號:TM351 文獻標識碼:A 文章編號:1007-3175(2024)07-0037-06
Research on Flux-Weakening Control of IPMSM Vector Control System
ZHAO Xin1, WANG Hai-ming2, ZHAO Yan-hui3
(1 Henan Source Grid Load Storage Electric Research Institute Co., Ltd, Xuchang 461000, China;
2 XJ Group Corporation , Xuchang 461000, China;
3 State Grid Wulumuqi Electric Power Supply Company, Urumqi 830054, China)
Abstract: It is important to improve the steady-state and dynamic control performance of the motor and ensure the stability of the motor running at high speed under different wind conditions and bus voltage drop.This paper analyzes the model and constraints condition of the interior permanent magnet synchronous motor (IPMSM), it combines with the application characteristics of the permanent magnet synchronous motor and bases on vector control of SVPWM and dual current flux-weakening control strategy of voltage outer loop, the vector control and flux-weakening control system model are designed and simulated.Then, the experimental platform is built based on the control system mode,and the performance of vector control and flux-weakening control under different DC bus voltages is tested and analyzed, it verifies the rationality of the model design and realizes the expansion performance. The control system has higher application value, and it has been used in the pitch servo control system of wind turbine.
Key words: interior permanent magnet synchronous motor; vector control ; flux-weakening control; voltage outer loop
參考文獻
[1] 董艮滔,朱兵,楊建飛,等. 表貼式永磁同步電機弱磁控制方法研究[J] . 工業(yè)控制計算機,2020,33(6) :152-154.
[2] 張斯其.2 MW 風力發(fā)電變槳驅(qū)動控制策略研究[D]. 哈爾濱:哈爾濱工業(yè)大學,2016.
[3] 劉亞兵,李譯,王海清,等. 低速大扭矩永磁同步電機矢量控制技術(shù)[J]. 微特電機,2020,48(7) :44-46.
[4] 李珂,顧欣,劉旭東,等. 基于梯度下降法的永磁同步電機單電流弱磁優(yōu)化控制[J] . 電工技術(shù)學報,2016,31(15) :8-15.
[5] 趙鋼,朱奧辭,張世忠. 一種改進型 PMSM 弱磁控制策略的研究[J]. 電氣傳動,2019,49(8) :11-16.
[6] 李雪,遲頌,劉聰,等. 基于虛擬電阻的永磁同步電機單電流調(diào)節(jié)器弱磁控制[J] . 電工技術(shù)學報,2020,35(5) :1046-1054.
[7] 陳宇崢. 永磁同步電機弱磁控制策略研究[D] . 杭州:浙江大學,2018.
[8] 目云奎,李祥飛,張昌凡,等. 內(nèi)嵌式永磁同步電機永磁磁鏈在線辨識研究[J] . 湖南工業(yè)大學學報,2019,33(4) :13-18.
[9] 任少盟,萬宏舸. 永磁同步電機改進弱磁控制策略[J].微電機,2019,52(2) :42-45.
[10] 石訊,易映萍,石偉. 永磁同步電機單電流調(diào)節(jié)器弱磁控制策略優(yōu)化[J]. 控制工程,2021,28(2) :327-334.