Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁(yè) >> 文章檢索 >> 往年索引

功率IGBT模塊熱網(wǎng)絡(luò)參數(shù)提取研究綜述

來源:電工電氣發(fā)布時(shí)間:2017-10-19 14:19 瀏覽次數(shù):3
功率IGBT模塊熱網(wǎng)絡(luò)參數(shù)提取研究綜述
 
王存樂,李志剛,李雄,孔梅娟
(河北工業(yè)大學(xué) 電氣工程學(xué)院,天津 300130)
 
    摘 要:功率IGBT 模塊熱網(wǎng)絡(luò)參數(shù)與IGBT 的可靠性密切相關(guān)。介紹了Foster 熱網(wǎng)絡(luò)和Cauer 熱網(wǎng)絡(luò)參數(shù)的獲取方法。Foster 熱網(wǎng)絡(luò)參數(shù)通過瞬態(tài)熱阻抗曲線的指數(shù)級(jí)擬合得到,根據(jù)獲得瞬態(tài)額阻抗曲線方式的不同,又可以分為直接測(cè)溫法、有限元法、溫敏參數(shù)法和雙界面瞬態(tài)測(cè)量法;Cauer 熱網(wǎng)絡(luò)參數(shù)除了利用瞬態(tài)熱阻抗曲線擬合方式得到,還可以根據(jù)器件的封裝結(jié)構(gòu)計(jì)算獲得。探討了現(xiàn)階段熱網(wǎng)絡(luò)參數(shù)獲取存在的主要問題,指出根據(jù)IGBT 功率器件在正常運(yùn)行過程中的相關(guān)測(cè)量,對(duì)熱網(wǎng)絡(luò)參數(shù)直接進(jìn)行在線識(shí)別,可減少因熱網(wǎng)絡(luò)參數(shù)測(cè)量而造成的損失,對(duì)于結(jié)溫的實(shí)時(shí)估測(cè)和壽命預(yù)測(cè)至關(guān)重要。
    關(guān)鍵詞:功率IGBT 模塊;Foster 熱網(wǎng)絡(luò);Cauer 熱網(wǎng)絡(luò);參數(shù)獲取
    中圖分類號(hào):TN322+.8     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2017)10-0001-06
 
Review of Research on Thermal Network Parameters Extraction of Power Insulated Gate Bipolar Translator Module
 
WANG Cun-le, LI Zhi-gang, LI Xiong, KONG Mei-juan
(School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China)
 
Abstract: The thermal network parameters of power insulated gate bipolar translator (IGBT) module are closely related to the reliability of the IGBT. Introduction was made to the parameters acquisition methods of Foster thermal network and Cauer thermal network. Foster thermal network parameters could be obtained by matching the exponential order of transient thermal impedance curves. According to the difference of the ways of obtaining the transient impedance curves, it can be divided into direct temperature method, finite element method, thermo-sensitive parameter method and double interface transient measurement method. Cauer thermal network parameters could be obtained like the above method, in addition, Cauer thermal network parameters could be obtained according to the device package structure. The main problems existing in thermal network acquisition at present were discussed. According to the correlation measurement in the normal operation process of IGBT power device, the thermal network parameters were carried out online identification to reduce the losses caused by thermal network parameters, which is crucial for real-time junction temperature estimation and life forecast.
Key words: power insulated gate bipolar translator module; Foster thermal network; Cauer thermal network; parameter acquisition
 
參考文獻(xiàn)
[1] 賴偉, 陳民鈾, 冉立, 等. 老化試驗(yàn)條件下的IGBT 失效機(jī)理分析[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2015,35(20):5293-5300.
[2] 方鑫,周雒維,姚丹,等.IGBT 模塊壽命預(yù)測(cè)模型綜述[J]. 電源學(xué)報(bào),2014,12(3):14-21.
[3] 杜雄,李高顯,李騰飛,等. 風(fēng)電變流器IGBT模塊的多時(shí)間尺度壽命評(píng)估[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2015,35(23):6152-6161.
[4] 田蘊(yùn)杰,張小玲,謝雪松,等.IGBT 熱疲勞工作對(duì)焊料層可靠性的影響[J]. 固體電子學(xué)研究與進(jìn)展,2014,34(3):288-292.
[5] DU B, HUDGINS J L, SANTI E, et al. Transient Electrothermal Simulation of Power Semiconductor Devices[J].IEEE Transactions on Power Electronics,2010,25(1):237-248.
[6] CHOI U, BLAABJERG F, LEE K B, et al. Study and handling methods of power IGBT module failures in power electronic converter systems[J]. IEEE Transactions on Power Electronics,2014,30(5):2517-2533.
[7] DROFENIK U, KOLAR J W.Teaching thermal design of power electronic systems with web-based interactive educational software[C]//IEEEApplied Power Electronics Conference and Exposition,2003:1029-1036.
[8] 魏克新,杜明星. 基于集總參數(shù)法的IGBT 模塊溫度預(yù)測(cè)模型[J]. 電工技術(shù)學(xué)報(bào),2011,26(12):79-84.
[9] ANDREAS H, RENO K, STEPHAN L, et al.Transient Thermal Impedance Model Based on Online-Measurement of the On-State Voltage in IGBT Converters[C]//9th International Conference on Integrated Power Electronics Systems,2016:1-4.
[10] KHATIR Z, CARUBELLI S, LECOQ F.Real-time computation of  thermal constraints in multichip power electronic devices[J].IEEE Transactions on Components and Packaging Technologies,2004,27(2):337-344.
[11] 張亞玲,李志剛,姚芳,等. 一種IGBT熱阻測(cè)試方法的研究[J]. 河北工業(yè)大學(xué)學(xué)報(bào),2016,45(1):1-4.
[12] 姚芳,王少杰,陳盛華,等. IGBT功率模塊瞬態(tài)熱阻抗測(cè)量方法研究[J]. 電力電子技術(shù),2016,50(9):103-105.
[13] HUMPHREY M N A, LUBOS S, VACLAY S, et al. Experimental Validation of IGBT Thermal Impedances from Voltage-Based and Direct Temperature Measurements[C]//IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society,2016:3396-3401.
[14] 李武華,陳玉香,羅皓澤,等. 大容量電力電子器件結(jié)溫提取原理綜述及展望[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2016,36(13):3546-3557.
[15] 陳明,胡安. IGBT結(jié)溫模擬和探測(cè)方法對(duì)比研究[J]. 電機(jī)與控制學(xué)報(bào),2011,15(12):44-49.
[16] 陳明,胡安,唐勇,等. 絕緣柵雙極型晶體管傳熱模型建模分析[J]. 高電壓技術(shù),2011,37(2):453-459.
[17] 吳巖松,羅皓澤,李武華,等. 用于IGBT模塊結(jié)溫預(yù)測(cè)的熱- 電耦合模型研究[J]. 電工電能新技術(shù),2014,33(3):13-17.
[18] 耿莉,陳治明,KRUEMMER R,等. 結(jié)溫在線控制系統(tǒng)的IGBT功率模塊熱耦合模型[J]. 微電子學(xué),2003,33(4):294-297.
[19] 李輝,劉盛權(quán),李洋,等. 考慮多熱源耦合的風(fēng)電變流器IGBT 模塊結(jié)溫評(píng)估模型[J]. 電力自動(dòng)化設(shè)備,2016,36(2):51-56.
[20] 陳明,汪波,唐勇.IGBT 動(dòng)態(tài)熱阻抗曲線提取實(shí)驗(yàn)研究[J]. 電力電子技術(shù),2010,44(9):101-103.
[21] AVENAS Y, DUPONT L, KHATIR Z.Temperature Measurement of Power Semiconductor Devices by Thermo-Sensitive Electrical Parameters—A Review[J].IEEE Transactions on Power Electronics,2011,27(6):3081-3092.
[22] GACHOVSKA T K, TIAN B, HUDGINS J L, et al.A Real-Time Thermal Model for Monitoring of Power Semiconductor Devices[J].IEEE Transactions on Industry Applications,2015,51(4):3361-3367.
[23] SCHWEITZER D, PAPE H, CHEN L, et al.Transient dual interface measurement—A new JEDEC standard for the measurement of the junctionto-case thermal resistance[C]//2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium,2011:222-229.
[24] SCHWEITZER D.Transient Dual Interface Measurement of the Rth-JC of Power Packages[C]//14th International Workshop on Thermal Inveatigation of ICs and Systems,2008:14-19.
[25] 鄧二平,趙志斌,張朋,等. 壓接型IGBT器件與焊接式IGBT 模塊熱阻測(cè)試方法對(duì)比研究[J]. 智能電網(wǎng),2016,4(7):631-638.
[26] QIU Zhijie, ZHANG Jin.Validation of transient dual interface measurement method of IGBT Rth-JC[C]//2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia),2016:1669-1673.
[27] GERSTENMAIER Y C, KIFFE W, WACHUTKA G. Combination of thermal subsystems modeled by rapid circuit transformation[C]//13th International Workshop on Thermal Investigation of ICs and Systems,2007:115-120.
[28] 徐銘偉,周雒維,杜雄,等. NPT型IGBT電熱仿真模型參數(shù)提取方法綜述[J]. 電力自動(dòng)化設(shè)備,2013,33(1):134-141.
[29] YIN Jian, van WYK J D, ODENDAAL W G, et al. Comparison of Transient Thermal Parameters for Different Die-Connecting Approaches[J]. IEEE Transactions on Industry Applications,2006,42(6):1403-1411.
[30] LUO Zhaohui, AHN H, NOKALI M A E.A thermal model for insulated gate bipolar transistor module[J]. IEEE Transactions on Power Electronics,2004,19(4):902-907.
[31] 杜雄, 李騰飛, 夏俊, 等. 基于零輸入響應(yīng)的Cauer 型RC 熱網(wǎng)絡(luò)參數(shù)辨識(shí)方法[J]. 電工技術(shù)學(xué)報(bào),2017,32(1):222-230.
[32] LI Hui, LIAO Xinglin, YANG Li, et al.ImprovedThermal Couple Impedance Model and Thermal Analysis of Multi-Chip Paralleled IGBT Module[C]//2015 IEEE Energy Conversion Congress and Exposition(ECCE),2015:3748-3753.
[33] GACHOVSKA T K, TIAN B, HUDGINS J L, et al. A real-time thermal model for monitoring of power semiconductor devices[J].Energy Conversion Congress & Exposition,2013,51(4):2208-2213.
[34] MENG Jinlei, WEN Xuhui, ZHONG Yulin, et al. A method for thermal resistance calculation of power module considering temperature effect on thermal conductivity[C]//7th International Power Electronics and Motion Control Conference(IPEMC),2012:245-248.
[35] ISHIKO M, KONDO T.A simple approach for dynamic junction temperature estimation of IGBTs on PWM operating conditions[C]//IEEE Power Electronics Specialists Conference,2007:916-920.
[36] MENG Jinlei, WEN Xuhui, ZHONG Yulin, et al.  Studies on the temperature effect on thermal resistance of power modules[C]//IEEE Vehicle Power and Propulsion Conference (VPPC),2013:1-5.
[37] XIANG Dawei, RAN Li, TAVNER P,et al. Monitoring solder fatigue in a power module using case-above-ambient temperature rise[J]. IEEE Transactions on Industry Applications,2011,47(6):2578-2591.