Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 文章瀏覽排名

基于VMD-IGWO-SVM的風電功率超短期預測研究

來源:電工電氣發(fā)布時間:2019-01-21 14:21 瀏覽次數(shù):807
基于VMD-IGWO-SVM的風電功率超短期預測研究
 
沈岳峰,都洪基
(南京理工大學 自動化學院,江蘇 南京 210094)
 
    摘 要:為了提高風電功率預測精度,保證風能的有效利用,提出一種基于變分模態(tài)分解和改進灰狼算法優(yōu)化支持向量機的風電功率超短期組合預測模型。采用變分模態(tài)分解將風電功率序列分解為一系列具有不同中心頻率的模態(tài)分量以降低其隨機性,將各分量分別建立支持向量機預測模型,并采用改進灰狼算法對其參數(shù)尋優(yōu),將各分量的預測值疊加重構(gòu)得到最終的預測值。實例仿真表明,所提的組合預測模型與其他預測模型相比具有更高的預測精度。
    關鍵詞:風電功率超短期預測;變分模態(tài)分解;改進灰狼算法;支持向量機;預測精度
    中圖分類號:TM715     文獻標識碼:A     文章編號:1007-3175(2019)01-0020-06
 
Research on Ultra-Short-Term Wind Power Prediction Based on VMD-IGWO-SVM
 
SHEN Yue-feng, DU Hong-ji
(School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China)
 
    Abstract: In order to improve the accuracy of wind power prediction and to ensure the effective utilization of wind energy, this paper proposed a combined model based on VMD and SVM optimized by IGWO for ultra-short-term wind power prediction. VMD was used to decompose the wind power series into a series of modal components with different central frequencies to reduce its randomness. The SVM prediction model was established for each component and its parameters were optimized by IGWO. The predicted value of each component was superimposed to get the final predicted value.Simulation results show that compared with other prediction models, the proposed combination prediction model has higher prediction accuracy.
    Key words: ultra-short-term wind power prediction; variational mode decomposition; improved grey wolf optimizer; support vector machine; prediction accuracy
 
參考文獻
[1] 董朕,殷豪,孟安波. 基于混合算法優(yōu)化神經(jīng)網(wǎng)絡的風電預測模型[J]. 廣東電力,2017,30(2):29-33.
[2] 吳道林. 短期風電功率預測方法研究[D]. 蕪湖:安徽工程大學,2017.
[3] 譚沛然. 風電功率預測算法研究[D]. 太原:太原理工大學,2017.
[4] 焦?jié)櫤?,蘇辰雋,林碧英,等. 基于氣象信息因素修正的灰色短期負荷預測模型[J]. 電網(wǎng)技術,2013,37(3):720-725.
[5] 江岳春,張丙江,邢方方,等. 基于混沌時間序列GA-VNN模型的超短期風功率多步預測[J]. 電網(wǎng)技術,2015,39(8):2160-2166.
[6] 黎靜華,桑川川,甘一夫,等. 風電功率預測技術研究綜述[J]. 現(xiàn)代電力,2017,34(3):1-11.
[7] 赫衛(wèi)國,郝向軍,郭雅娟,等. 基于ARIMA和SVR的光伏電站超短期功率預測[J]. 廣東電力,2017,30(8):32-37.
[8] 韓世軍,朱菊,毛吉貴,等. 基于粒子群優(yōu)化支持向量機的變壓器故障診斷[J]. 電測與儀表,2014,51(11):71-75.
[9] 陳偉根,滕黎,劉軍, 等. 基于遺傳優(yōu)化支持向量機的變壓器繞組熱點溫度預測模型[J]. 電工技術學報,2014,29(1):44-51.
[10] 彭春華,劉剛,孫惠娟. 基于小波分解和微分進化支持向量機的風電場風速預測[J]. 電力自動化設備,2012,32(1):9-13.
[11] 管志威, 陳國初, 徐余法, 等. 基于改進EMD與SVM的風電功率短期預測模型[J]. 控制工程,2014,21(6):833-837.
[12] DRAGOMIRETSKIY K, ZOSSO D.Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing,2014,62(3):531-544.
[13] BOYD S, PARIKH N, CHU E, et al.Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[J]. Foundations & Trends in Machine Learning,2011,3(1):1-122.
[14] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014,69(3):46-61.
[15] 呂中亮. 基于變分模態(tài)分解與優(yōu)化多核支持向量機的旋轉(zhuǎn)機械早期故障診斷方法研究[D]. 重慶:重慶大學,2016.