Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 文章瀏覽排名

基于參數(shù)自適應DBSCAN算法的旋轉(zhuǎn)設備健康評估

來源:電工電氣發(fā)布時間:2020-12-19 13:19 瀏覽次數(shù):685
基于參數(shù)自適應DBSCAN算法的旋轉(zhuǎn)設備健康評估
 
于凱,王哲,王玉龍,董恒章,劉寶楠,張世林
(安徽華電宿州發(fā)電有限公司,安徽 宿州 234000)
 
    摘 要:針對電廠旋轉(zhuǎn)設備的運行狀態(tài)異常檢測問題,提出一種基于參數(shù)自適應DBSCAN算法的旋轉(zhuǎn)設備健康狀態(tài)在線評估算法。該算法中為降低人工設定鄰域半徑和密度閾值對密度聚類結果的影響,選用輪廓系數(shù)作為聚類結果有效性評價指標,基于粒子群算法(PSO)確定合理的參數(shù)值。采用參數(shù)自適應DBSCAN算法定期對正常運行時的歷史數(shù)據(jù)進行離線聚類分析,基于此聚類結果分析實時采集的數(shù)據(jù),在線評估旋轉(zhuǎn)設備的健康指數(shù)。對某電廠旋轉(zhuǎn)設備的運行數(shù)據(jù)進行仿真分析,結果表明所提方法能夠有效檢測設備異常運行狀態(tài),為設備的安全可靠運行提供保障。
    關鍵詞:旋轉(zhuǎn)設備;健康指數(shù);參數(shù)自適應DBSCAN算法;粒子群算法;在線評估
    中圖分類號:TM307     文獻標識碼:A     文章編號:1007-3175(2020)12-0024-06
 
Evaluation on Health of Rotation Equipment Based on Parameter Adaptive DBSCAN Algorithm
 
YU Kai, WANG Zhe, WANG Yu-long, DONG Heng-zhang, LIU Bao-nan, ZHANG Shi-lin
(Anhui Huadian Suzhou Power Generation Co., Ltd, Suzhou 234000, China)
 
    Abstract: In this paper, aiming at the detection of abnormal operation status of rotating equipment in power plants, this paper proposes an online health status assessment algorithm for rotating equipment based on parameter adaptive DBSCAN algorithm. In this algorithm, in order to reduce the influence of artificially set neighborhood radius (Eps) and density threshold (MinPts) on the results of density clustering, the contour coefficient is selected as Validity evaluation index of clustering results, determine reasonable parameter values based on particle swarm optimization (PSO). The parameter adaptive DBSCAN algorithm is used to periodically perform offline clustering analysis on historical data during normal operation. Based on this clustering result, the real-time collected data is analyzed, and the health index of the rotating equipment is evaluated online. After a simulation analysis of the operating data of a rotating equipment in a power plant, the results show that the proposed method can effectively detect the abnormal operating state of the equipment and provide a guarantee for the safe and reliable operation of the equipment.
    Key words: rotation equipment; health index; parameter adaptive DBSCAN algorithm; particle swarm optimization algorithm; online evaluation
 
參考文獻
[1] 廖瑞金,王有元,劉航,等. 輸變電設備狀態(tài)評估方法的研究現(xiàn)狀[J]. 高電壓技術,2018,44(11):3454-3464.
[2] 江秀臣,盛戈皞. 電力設備狀態(tài)大數(shù)據(jù)分析的研究和應用[J]. 高電壓技術,2018,44(4):1041-1050.
[3] KANG Chongqing, WANG Yi, XUE Yusheng, et al.Big Data Analytics in China's Electric Power Industry: Modern Information, Communication Technologies, and Millions of Smart Meters[J]. IEEE Power and Energy Magazine,2018,16(3):54-65.
[4] 楊茂,楊瓊瓊. 基于云分段最優(yōu)熵算法的風電機組異常數(shù)據(jù)識別研究[J]. 中國電機工程學報,2018,38(8):2294-2301.
[5] 田力, 向敏. 基于密度聚類技術的電力系統(tǒng)用電量異常分析算法[J]. 電力系統(tǒng)自動化,2017,41(5):64-70.
[6] 嚴英杰,盛戈皞,陳玉峰,等. 基于大數(shù)據(jù)分析的輸變電設備狀態(tài)數(shù)據(jù)異常檢測方法[J]. 中國電機工程學報,2015,35(1):52-59.
[7] 程超,張漢敬,景志敏,等. 基于離群點算法和用電信息采集系統(tǒng)的反竊電研究[J]. 電力系統(tǒng)保護與控制,2015,43(17):69-74.
[8] 陳佳俊,陳玉峰,嚴英杰,等. 基于時空聯(lián)合聚類方法的輸變電設備狀態(tài)異常檢測[J]. 南方電網(wǎng)技術,2015,9(11):65-72.
[9] 邱志斌,阮江軍,黃道春,等. 基于電機電流檢測的高壓隔離開關機械故障診斷[J]. 中國電機工程學報,2015,35(13):3459-3466.
[10] DREISBUSCH K, KRANZ H G, SCHNETTLER A. Determination of a failure probability prognosis based on PD-diagnostics in GIS[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(6):1707-1714.
[11] 彭楚寧,羅冉冉,王曉東. 新一代智能電能表支撐泛在電力物聯(lián)網(wǎng)技術研究[J]. 電測與儀表,2019,56(15):137-142.
[12] 竇健,劉宣,盧繼哲,等. 基于用電信息采集大數(shù)據(jù)的防竊電方法研究[J]. 電測與儀表,2018,55(21):43-49.
[13] 李寧,尹小明,丁學峰,等. 一種融合聚類和異常點檢測算法的竊電辨識方法[J]. 電測與儀表,2018,55(21):19-24.
[14] 李文杰,閆世強,蔣瑩,等. 自適應確定DBSCAN算法參數(shù)的算法研究[J]. 計算機工程與應用,2019,55(5):1-7.
[15] 龍海俠,須文波,王小根,等. 基于選擇操作的量子粒子群算法[J]. 控制與決策,2010,25(10):1499-1506.
[16] CLERC M, KENNEDY J.The Particle Swarm: Explosion, Stability, and Convergence in a Multi-Dimensional Complex Space[J].IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.
[17] 王帥, 杜欣慧, 姚宏民, 等. 面向含多種用戶類型的負荷曲線聚類研究[J]. 電網(wǎng)技術,2018,42(10):3401-3412.