Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

柔性多端高壓直流輸電系統(tǒng)雙環(huán)附加頻率控制研究

來源:電工電氣發(fā)布時間:2021-06-28 10:28 瀏覽次數(shù):597
柔性多端高壓直流輸電系統(tǒng)雙環(huán)附加頻率控制研究
 
馬巖1 ,潘歡1,2,納春寧1,2
(1 寧夏大學 物理與電子電氣工程學院,寧夏 銀川 750021;
2 寧夏電力能源安全重點實驗室,寧夏 銀川 750004) 
 
 
    摘 要 :傳統(tǒng) PI 雙環(huán)解耦電流控制的電壓源型轉換器難以為孤立交流區(qū)域提供頻率支持,因此需要增加頻率控制環(huán)節(jié)。通過在 VSC 控制器的有功控制環(huán)中增加有功 - 頻率下垂控制,在無功環(huán)中增加無功頻率微分控制,設計一種基于本地信號、無需遠程通信的雙環(huán)附加頻率控制策略。該控制策略主要通過共享風電場功率裕度實現(xiàn)對 AC 區(qū)域的頻率支持,同時通過無功環(huán)附加頻率控制改善交流區(qū)域頻率響應暫態(tài)性能。在 MATLAB/Simulink 仿真平臺搭建 4 端柔性高壓直流輸電系統(tǒng),驗證了雙環(huán)附加頻率控制策略的有效性。
    關鍵詞 :柔性多端高壓直流輸電 ;下垂控制 ;雙環(huán)附加控制 ;功率裕度 ;頻率支持
    中圖分類號 :TM712 ;TM721.1     文獻標識碼 :A     文章編號 :1007-3175(2021)06-0001-07
 
Research on Double Loop Additional Frequency Control of
VSC-MTDC System
 
MA Yan1 , PAN Huan1,2, NA Chun-ning1,2
(1 School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China;
2 Ningxia Key Laboratory of Electrical Energy Security, Yinchuan 750004, China)
 
    Abstract: The voltage source converter which based on traditional PI double loop decoupling current control is difficult to provide frequency support for isolated AC region, so it needs to add frequency control link. By adding active-frequency droop control in active control loop of VSC controller in AC area side and reactive-frequency differential control in reactive loop, a dual loop additional frequency control based on local signal and without remote communication is designed. The control strategy can support the frequency of AC area by sharing the power margin of WPP, at the same time, the additional frequency control of reactive power loop is used to improve the transient performance of AC frequency response. A four-terminal VSC-MTDC system is built on MATLAB/Simulink simulation platform to verify the effectiveness of the dual loop additional frequency control strategy.
    Key words: VSC-MTDC; droop control; double loop additional control; power margin; frequency support
 
參考文獻
[1] BOZHKO S, ASHER G, LI R, et al.Large offshore DFIG-based wind farm with line-commutated HVDC connection to the main grid :Engineering studies[J].IEEE Transactions on Energy Convertsion,2008,23(1) :119-127.
[2] GOMIS-BELLMUNT O, LIANG J, EKANAYAKE J,et al.Voltage current characteristics of multiterminal HVDC-VSC for offshore wind farms[J].Electric Power Systems Research,2011,81(2) :440-450.
[3] XU Lie , YAO Liangzhong , SASSE C . Grid integration of large DFIG-based wind farms using VSC transmission[J].IEEE Transactions on Power Systems,2007,22(3) :976-984.
[4] 姚良忠,吳婧,王志冰,等 . 未來高壓直流電網(wǎng)發(fā)展形態(tài)分析 [J] . 中國電機工程學報,2014,34(34) :6007-6020.
[5] CHAUDHURI N R, CHAUDHURI B.Adaptive droop control for effective power sharing in Multi Terminal DC(MTDC) grids[J].IEEE Transactions on Power Systems,2013,28(1) :21-29.
[6] CHAUDHURI N R, MAJUMDER R, CHAUDHURI B.System frequency support through Multi-Terminal DC(MTDC) grids[J].IEEE Transactions on Power Systems,2013,28(1) :347-356.
[7] ZHANG L, HARNEFORS L, NEE H P.Interconnection of two very weak AC systems by VSC-HVDC links using power-synchronization control[J].IEEE Transactions on Power Systems,2011,26(1) :344-355.
[8] GUAN M, CHENG J, WANG C, et al.The frequency regulation scheme of interconnected grids with VSC-HVDC links[J].IEEE Transactions on Power Systems,2017,32(2) :864-872.
[9] ANDREASSON M, WIGET R, DIMAROGONAS D V, et al.Distributed frequency control through MTDC transmission systems[J].IEEE Transactions on Power Systems,2017,32(1) :250-260.
[10]MORREN J, DEHAAN S W H, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J].IEEE Transactions on Power Systems,2006,21(1) :433-434.
[11]DAI J, PHULPIN Y, SARLETTE A, et al.Impact of delays on a consensus-based primary frequency control scheme for AC systems connected by a multi-terminal HVDC grid[C]//Bulk Power System
Dynamics and Control- Ⅷ (IREP),2010 :1-9.
[12]BIANCHI F D, DOMINGUEZ-GARCIA J L, GOMIS BELLMUNT O.Control of multi-terminal HVDC networks towards wind power integration: A review[J].Renewable and Sustainable Energy Reviews,2016,55(1) :1055-1068.
[13]BIANCHI F D, DOMINGUEZ-GARCIA J L, VRANA T K.Distributed frequency control with partial information using MT-HVDC grids and WPPs[J].IEEE Systems Journal,2019,13(2) :1694-1701.
[14]王煒字,李勇,曹一家,等 . 參與電網(wǎng)調(diào)頻的多端柔性直流輸電系統(tǒng)自適應下垂控制策略 [J] . 電力系統(tǒng)自動化,2017,41(13) :142-149.
[15]楊金剛,袁志昌,李順昕,等 . 經(jīng)柔性直流輸電并網(wǎng)的大型風電場頻率控制策略 [J] . 電力自動化設備,2019,39(6) :109-114.
[16]吳巖松 . 基于 IGBT 開關動態(tài)特性離線測試系統(tǒng)的大功率逆變器熱 - 電耦合研究 [D]. 杭州:浙江大學,2013.
[17]吳蒙,賀之淵,閻發(fā)友,等 . 下垂控制對直流電網(wǎng)動態(tài)電壓穩(wěn)定性的影響分析 [J] . 電力系統(tǒng)保護與控制,2019,47(10) :8-15.
[18]徐進,金逸,胡從川,等 . 適用于海上風電并網(wǎng)的多端柔性直流系統(tǒng)自適應下垂控制研究 [J] . 電力系統(tǒng)保護與控制,2018,46(4) :78-85.
[19]洪莎莎,武迪,呂宏水,等 . 基于高階系統(tǒng)模型的 VSC-MTDC 下垂控制策略研究 [J]. 電力系統(tǒng)保護與控制,2017,45(22) :125-131.
[20]劉寧寧,曹煒,趙晉斌 . 直流微電網(wǎng)的一種增量式下垂控制方法 [J] . 電力系統(tǒng)保護與控制,2018,46(8) :24-30.
[21]RENEDO J, GARCIA-CERRADA A, ROUCO L.Reactive power coordination in VSC-HVDC multiterminal systems for transient stability improvement[J].IEEE Transactions on Power Systems 2017,32(5) :3758-3767.
[22]吳方劼,馬玉龍,梅念,等 . 舟山多端柔性直流輸電工程主接線方案設計 [J] . 電網(wǎng)技術,2014,38(10) :2651-2657.
[23]周浩,沈揚,李敏,等 . 舟山多端柔性直流輸電工程換流站絕緣配合 [J] . 電網(wǎng)技術,2013,37(4) :879-890.