Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁(yè) >> 文章檢索 >> 往年索引

電動(dòng)汽車(chē)充電站短期負(fù)荷的神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型

來(lái)源:電工電氣發(fā)布時(shí)間:2023-05-28 09:28 瀏覽次數(shù):309

電動(dòng)汽車(chē)充電站短期負(fù)荷的神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型

喬維德1,喬淳2
(1 無(wú)錫開(kāi)放大學(xué) 科研與發(fā)展規(guī)劃處,江蘇 無(wú)錫 214011;
2 錫山水務(wù)集團(tuán)有限公司,江蘇 無(wú)錫 214101)
 
    摘 要:為提高電動(dòng)汽車(chē)充電站短期負(fù)荷預(yù)測(cè)精確度,以某電動(dòng)汽車(chē)充電站的相關(guān)數(shù)據(jù)為依據(jù),分析了電動(dòng)汽車(chē)充電站的負(fù)荷特性以及影響負(fù)荷變化的主要因素,并構(gòu)建了基于人工魚(yú)群-蛙跳算法優(yōu)化反向傳播 (BP) 神經(jīng)網(wǎng)絡(luò)的電動(dòng)汽車(chē)充電站短期負(fù)荷預(yù)測(cè)模型。仿真算例結(jié)果表明,該模型預(yù)測(cè)優(yōu)勢(shì)明顯,預(yù)測(cè)速度快,預(yù)測(cè)精度高,適用于電動(dòng)汽車(chē)充電站的短期負(fù)荷預(yù)測(cè),為下一步工程實(shí)踐應(yīng)用提供了理論依據(jù)。
    關(guān)鍵詞: 電動(dòng)汽車(chē)充電站;短期負(fù)荷預(yù)測(cè);神經(jīng)網(wǎng)絡(luò)
    中圖分類(lèi)號(hào):U469.72 ;TM714     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2023)05-0007-05
 
Neural Network Forecasting Model for Short-Term Load of
Electric Vehicle Charging Stations
 
QIAO Wei-de1, QIAO Chun2
(1 Scientific Research and Development Planning Office of Wuxi Open University, Wuxi 214011, China;
2 Xishan Water Group Co., Ltd, Wuxi 214101, China)
 
    Abstract: In order to increase the short-term load forecasting accuracy of electric vehicle charging stations, the paper, according to the relevant data of a electric vehicle charging station, makes analysis of its load characteristics and main factors affecting load variation, and builds a short-term load forecasting model of electric vehicle charging stations based on the back propagation (BP) neural network optimized by artificial fish-frog leap algorithm. The simulation results show that this model has great advantages of fast forecasting speed and high forecasting accuracy. It not only suits for short-term load forecasting of electric vehicle charging stations, but also provides a theoretical basis for the next engineering practice.
    Key words: electric vehicle charging station; short-term load forecasting; neural network
 
參考文獻(xiàn)
[1] 喬維德. 電動(dòng)汽車(chē)鋰電池荷電狀態(tài)的徑向基神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)[J] . 黃岡職業(yè)技術(shù)學(xué)院學(xué)報(bào),2021,23(5):120-123.
[2] 王哲,代兵琪,李相棟. 基于 PSO-SNN 的電動(dòng)汽車(chē)充電站短期負(fù)荷預(yù)測(cè)模型研究[J] . 電氣技術(shù),2016(1):46-50.
[3] 喬維德. 基于人工魚(yú)群-蛙跳神經(jīng)網(wǎng)絡(luò)的變壓器故障診斷[J] . 常熟理工學(xué)院學(xué)報(bào),2016,30(4):70-74.
[4] 孫婉婉,楊樂(lè). 基于遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)的電動(dòng)汽車(chē)負(fù)荷短期預(yù)測(cè)[J]. 電工電氣, 2019(9):18-21.
[5] 常德政,任杰,趙建偉,等. 基于 RBF-NN 的電動(dòng)汽車(chē)充電站短期負(fù)荷預(yù)測(cè)研究[J] . 青島大學(xué)學(xué)報(bào)(工程技術(shù)版),2014,29(4):44-48.