電動汽車充電站短期負荷的神經(jīng)網(wǎng)絡(luò)預(yù)測模型
喬維德1,喬淳2
(1 無錫開放大學 科研與發(fā)展規(guī)劃處,江蘇 無錫 214011;
2 錫山水務(wù)集團有限公司,江蘇 無錫 214101)
摘 要:為提高電動汽車充電站短期負荷預(yù)測精確度,以某電動汽車充電站的相關(guān)數(shù)據(jù)為依據(jù),分析了電動汽車充電站的負荷特性以及影響負荷變化的主要因素,并構(gòu)建了基于人工魚群-蛙跳算法優(yōu)化反向傳播 (BP) 神經(jīng)網(wǎng)絡(luò)的電動汽車充電站短期負荷預(yù)測模型。仿真算例結(jié)果表明,該模型預(yù)測優(yōu)勢明顯,預(yù)測速度快,預(yù)測精度高,適用于電動汽車充電站的短期負荷預(yù)測,為下一步工程實踐應(yīng)用提供了理論依據(jù)。
關(guān)鍵詞: 電動汽車充電站;短期負荷預(yù)測;神經(jīng)網(wǎng)絡(luò)
中圖分類號:U469.72 ;TM714 文獻標識碼:A 文章編號:1007-3175(2023)05-0007-05
Neural Network Forecasting Model for Short-Term Load of
Electric Vehicle Charging Stations
QIAO Wei-de1, QIAO Chun2
(1 Scientific Research and Development Planning Office of Wuxi Open University, Wuxi 214011, China;
2 Xishan Water Group Co., Ltd, Wuxi 214101, China)
Abstract: In order to increase the short-term load forecasting accuracy of electric vehicle charging stations, the paper, according to the relevant data of a electric vehicle charging station, makes analysis of its load characteristics and main factors affecting load variation, and builds a short-term load forecasting model of electric vehicle charging stations based on the back propagation (BP) neural network optimized by artificial fish-frog leap algorithm. The simulation results show that this model has great advantages of fast forecasting speed and high forecasting accuracy. It not only suits for short-term load forecasting of electric vehicle charging stations, but also provides a theoretical basis for the next engineering practice.
Key words: electric vehicle charging station; short-term load forecasting; neural network
參考文獻
[1] 喬維德. 電動汽車鋰電池荷電狀態(tài)的徑向基神經(jīng)網(wǎng)絡(luò)預(yù)測[J] . 黃岡職業(yè)技術(shù)學院學報,2021,23(5):120-123.
[2] 王哲,代兵琪,李相棟. 基于 PSO-SNN 的電動汽車充電站短期負荷預(yù)測模型研究[J] . 電氣技術(shù),2016(1):46-50.
[3] 喬維德. 基于人工魚群-蛙跳神經(jīng)網(wǎng)絡(luò)的變壓器故障診斷[J] . 常熟理工學院學報,2016,30(4):70-74.
[4] 孫婉婉,楊樂. 基于遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)的電動汽車負荷短期預(yù)測[J]. 電工電氣, 2019(9):18-21.
[5] 常德政,任杰,趙建偉,等. 基于 RBF-NN 的電動汽車充電站短期負荷預(yù)測研究[J] . 青島大學學報(工程技術(shù)版),2014,29(4):44-48.