Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 文章瀏覽排名

弱慣性交流微電網(wǎng)群的分布式多目標(biāo)協(xié)同控制方法

來源:電工電氣發(fā)布時間:2023-07-01 10:01 瀏覽次數(shù):310

弱慣性交流微電網(wǎng)群的分布式多目標(biāo)協(xié)同控制方法

何志毅1,匡洪海1,于錫琪2,常宇瑞1,王凱1
(1 湖南工業(yè)大學(xué) 電氣與信息工程學(xué)院,湖南 株洲 412007;
2 國網(wǎng)湖南省電力有限公司株洲供電分公司,湖南 株洲 412000)
 
    摘 要:微電網(wǎng)群 (MGC) 集合了多個子網(wǎng)的電力資源,大量分布式電源 (DG) 的接入給系統(tǒng)的經(jīng)濟(jì)調(diào)度和功率均分帶來巨大挑戰(zhàn),也削弱了系統(tǒng)的慣性?;诜植际娇刂?,提出了一種微電網(wǎng)群的多目標(biāo)協(xié)同控制,設(shè)計了三層協(xié)同控制架構(gòu)。在設(shè)備層,利用虛擬同步發(fā)電機(jī) (VSG) 模擬慣性;在子網(wǎng)層,利用功率一致性控制,增加了系統(tǒng)的阻尼,實現(xiàn)功率均分和振蕩抑制;在網(wǎng)群層,基于等微增率準(zhǔn)則,實現(xiàn)網(wǎng)群的經(jīng)濟(jì)優(yōu)化和頻率恢復(fù)。通過仿真實驗,設(shè)計了沖擊負(fù)荷接入切除、通信延時以及功率限制等算例,證實了所提控制算法的有效性。
    關(guān)鍵詞: 微電網(wǎng)群;虛擬同步發(fā)電機(jī);分布式控制;頻率恢復(fù);功率分配
    中圖分類號:TM711     文獻(xiàn)標(biāo)識碼:A     文章編號:1007-3175(2023)06-0007-07
 
Distributed Multi-Objective Cooperative Control Method for
Weak-Inertia AC Microgrid Clusters
 
HE Zhi-yi1, KUANG Hong-hai1, YU Xi-qi2, CHANG Yu-rui1, WANG Kai1
(1 College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China;
2 Zhuzhou Power Supply Branch of State Grid Hunan Electric Power Co.,Ltd, Zhuzhou 412000, China)
 
    Abstract: Microgrid Clusters (MGC) gather the power generation resources of multiple subnets, and the interconnection of a great number of Distributed Generators (DG) will bring large challenges to the economic dispatch and power sharing of the system and also weaken the system inertia. The paper, based on distributed control, proposes a multi-objective cooperative control for MGC and a three-layer cooperative control framework. On the equipment layer, the Virtual Synchronous Generator (VSG) is used to simulate inertia; on the subnet layer, power consistency control is adopted to increase the system damping, which realizes power sharing and oscillation suppression; on the MGC layer,economic optimization and frequency recovery of MGC are realized based on the equal incremental principle. Finally, numerical examples such as impact load access removal, communication delay and power limitation are designed through simulation experiments to verify the effectiveness of the proposed control algorithm.
    Key words: microgrid clusters; virtual synchronous generator; distributed control; frequency recovery; power distribution
 
參考文獻(xiàn)
[1] 孟明,陳世超,趙樹軍,等. 新能源微電網(wǎng)研究綜述[J]. 現(xiàn)代電力,2017,34(1):1-7.
[2] 陳其森,汪湘晉,池偉,等. 多微電網(wǎng)互聯(lián)系統(tǒng)能量管理方法研究[J] . 電力系統(tǒng)保護(hù)與控制,2018,46(11):83-91.
[3] 曾正,趙榮祥,湯勝清,等. 可再生能源分散接入用先進(jìn)并網(wǎng)逆變器研究綜述[J] . 中國電機(jī)工程學(xué)報,2013,33(24):1-12.
[4] GOLSORKHI M S, HILL D J, KARSHENAS H R.Distributed voltage control and power management of networked microgrids[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2018,6(4):1892-1902.
[5] BIDRAM A, DAVOUDI A.Hierarchical structure of microgrids control system [J] . IEEE Transactions on Smart Grid,2012,3(4):1963-1976.
[6] 陳燕東,羅安,龍際根,等. 阻性逆變器并聯(lián)環(huán)流分析及魯棒下垂多環(huán)控制[J] . 中國電機(jī)工程學(xué)報,2013,33(18):18-29.
[7] 呂志鵬,蘇劍,李蕊,等. 不同功率等級微源逆變器并聯(lián)控制新方法[J] . 電工技術(shù)學(xué)報,2013,28(7):191-198.
[8] SUN Yao, HOU Xiaochao, YANG Jian, et al.New perspectives on droop control in AC microgrid[J].IEEE Transactions on Industrial Electronics, 2017,64(7):5741-5745.
[9] 王堯,李歡歡,鞠立偉,等. 面向智能化調(diào)度的微網(wǎng)群能量耦合協(xié)調(diào)控制策略及仿真分析[J] . 電網(wǎng)技術(shù),2018,42(7):2232-2239.
[10] 戴志輝,陳冰研,謝軍,等. 含多微網(wǎng)的主動配電網(wǎng)分層調(diào)度策略[J] . 電力系統(tǒng)保護(hù)與控制,2018,46(18):121-127.
[11] SIMPSON-PORCO J W, SHAFIEE Q, DORFLER F, et al.Secondary frequency and voltage control of islanded microgrids via distributed averaging[J].IEEE Transactions on Industrial Electronics, 2015, 62(11):7025-7038.
[12] SHAFIEE Q, GUERRERO J M, VASQUEZ J C.DistributedSecondary Control for Islanded Microgrids—A Novel Approach[J].IEEE Transactions on Power Electronics, 2014,29(2):1018-1031.
[13] BAZMOHAMMADI N, TAHSIRI A, ANVARI-MOGHADDAM A,et al.A hierarchical energy management strategy for interconnected microgrids considering uncertainty[J].International Journal of Electrical Power and Energy Systems, 2019,109:597-608.
[14] AMOATENG D O, HOSANI M A, ELMOURSI M S, et al.Adaptive voltage and frequency control of islanded multi-microgrids[J].IEEE Transactions on Power Systems, 2018, 33(4):4454-4465.
[15] WU Xiaoyu, XU Yin, WU Xiangyu, et al.A twolayer distributed cooperative control method for islanded networked microgrid systems[J].IEEE Transactions on Smart Grid, 2020,11(2):942-957.
[16] MOAYEDI S, DAVOUDI A.Distributed Tertiary Control of DC Microgrid Clusters[J].IEEE Transactions on Power Electronics, 2016,31(2):1717-1733.
[17] EIDSON D B, ILIC M D.Advanced generation control with economic dispatch[C]//Proceedings of the IEEE Conference on Decision and Control, 1995:3450-3458.
[18] LAI Jingang, LU Xiaoqing, YU Xinghuo, et al.Distributed voltage regulation for cyberphysical microgrids with coupling delays and slow switching topologies[J].IEEE Transactions on Systems, Man, and Cybernetics: Systems,2020, 50(1):100-110.
[19] 杜威,姜齊榮,陳蛟瑞. 微電網(wǎng)電源的虛擬慣性頻率控制策略[J]. 電力系統(tǒng)自動化,2011,35(23):26-31.
[20] 呂志鵬,盛萬興,鐘慶昌,等. 虛擬同步發(fā)電機(jī)及其在微電網(wǎng)中的應(yīng)用[J] . 中國電機(jī)工程學(xué)報,2014,34(16):2591-2603.
[21] 朱慧敏,苑舜. 基于功率解耦控制的虛擬同步發(fā)電機(jī)功率振蕩抑制策略[J] . 智慧電力,2020,48(4):70-76.
[22] SHUAI Zhikang , HUANG Wen , SHEN Zheng John, et al.Active Power Oscillation and Suppression Techniques Between Two Parallel Synchronverters During Load Fluctuations[J].IEEE Transactions on Power Electronics,2020,35(4):4127-4142.
[23] CHOOPANI M, HOSSEINAIN S H, VAHIDI B.A novel comprehensive method to enhance stability of multi-VSG grids[J].International Journal of Electrical Power & Energy Systems, 2019,104:502-514.
[24] FU Siqi, SUN Yao, LIU Zhangjie, et al.Power oscillation suppression in multi-VSG grid with adaptive virtual inertia[J].International Journal of Electrical Power & Energy Systems, 2022,135:107472.
[25] 李樹山,李剛,程春田,等. 動態(tài)機(jī)組組合與等微增率法相結(jié)合的火電機(jī)組節(jié)能負(fù)荷分配方法[J] .中國電機(jī)工程學(xué)報, 2011,31(7):41-47.