Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁(yè) >> 文章檢索 >> 往年索引

基于PRSGMD-XGBoost的光伏直流電能質(zhì)量擾動(dòng)識(shí)別

來(lái)源:電工電氣發(fā)布時(shí)間:2024-08-01 14:01 瀏覽次數(shù):63

基于PRSGMD-XGBoost的光伏直流電能質(zhì)量擾動(dòng)識(shí)別

朱憲宇,熊婕,李慶先,劉良江,左從瑞,劉青
(湖南省計(jì)量檢測(cè)研究院,湖南 長(zhǎng)沙 410018)
 
    摘 要:光伏電網(wǎng)受天氣因素和非線性負(fù)載等影響,直流電信號(hào)中存在的擾動(dòng)成分使得電能質(zhì)量評(píng)估的準(zhǔn)確性難以保障。利用復(fù)合多尺度模糊熵可克服光伏直流電信號(hào)初始單分量相似性度量突變的問(wèn)題,構(gòu)建了正則化 CMFE 算子評(píng)估各初始單分量重構(gòu)后的復(fù)雜度并約束殘余量能量最小,從而實(shí)現(xiàn)電信號(hào)和噪聲等擾動(dòng)的準(zhǔn)確分離,在此基礎(chǔ)上,提出了基于部分重構(gòu)辛幾何模態(tài)分解(PRSGMD)的光伏直流電信號(hào)自適應(yīng)去噪方法,結(jié)合極限梯度提升機(jī)(XGBoost)可有效挖掘特征與暫態(tài)穩(wěn)定性之間關(guān)系的優(yōu)勢(shì),實(shí)現(xiàn)了光伏直流電信號(hào)中復(fù)合擾動(dòng)的分離和識(shí)別。
    關(guān)鍵詞: 光伏;電能質(zhì)量擾動(dòng)識(shí)別;部分重構(gòu)辛幾何模態(tài)分解;極限梯度提升機(jī)
    中圖分類號(hào):TM615     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2024)07-0061-07
 
Photovoltaic DC Power Quality Disturbance Identification
Based on PRSGMD-XGBoost
 
ZHU Xian-yu, XIONG Jie, LI Qing-xian, LIU Liang-jiang, ZUO Cong-rui, LIU Qing
(Hunan Institute of Metrology and Test, Changsha 410018, China)
 
    Abstract: The photovoltaic (PV) grid is affected by weather factors and nonlinear loads, and the disturbance components in the direct current (DC) signal make it difficult to ensure the accuracy of power quality assessment. Therefore, in this paper the problem that the composite multiscale fuzzy entropy (CMFE) can overcome the sudden change of the initial single component similarity measure of the photovoltai DC signal is utilized, then the regularized CMFE operator is constructed to evaluate the complexity of each initial single component after reconstruction, while constraining the residual energy to be minimized, and finally the separation of electrical signals and noise and other disturbance is realized. On this basis, an adaptive denoising method for photovoltai DC signal based on partial reconstruction of symplectic geometry mode decomposition (PRSGMD) is proposed, and combined with the advantage that extreme gradient boosting (XGBoost) can effectively mine the relationship between features and transient stability, the separation and identification of compound disturbance in photovoltaic DC signals is realized.
    Key words: photovoltaic; power quality disturbance identification; partial reconstruction of symplectic geometry mode decomposition;extreme gradient boosting
 
參考文獻(xiàn)
[1] VINAYAGAM A, OTHMAN M L, VEERASAMY V, et al.A random subspace ensemble classification model for discrimination of power quality events in solar PV microgrid power network[J].Plos One,2022,17(1) :0262570.
[2] 李固. 基于光伏發(fā)電工程的電力系統(tǒng)長(zhǎng)期規(guī)劃模型研究[J]. 現(xiàn)代工業(yè)經(jīng)濟(jì)和信息化,2023,13(8) :192-194.
[3] 葛樂(lè),周宇浩,袁曉冬,等. 光伏并網(wǎng)與電能質(zhì)量治理統(tǒng)一控制 [J]. 太陽(yáng)能學(xué)報(bào),2017,38(9) :2426-2433.
[4] 李家俊,吳建軍,陳武,等. 基于 DWT-PCA-LIBSVM 的電能質(zhì)量擾動(dòng)分類方法[J]. 電工電氣,2023(3) :20-24.
[5] 焦晉榮. 直流配電網(wǎng)電能質(zhì)量問(wèn)題分析及擾動(dòng)檢測(cè)[D].秦皇島:燕山大學(xué),2017.
[6] 武昭旭,楊岸,祝龍記. 一種新的電能質(zhì)量擾動(dòng)識(shí)別方法[J] . 重慶工商大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,38(5) :49-54.
[7] 奚鑫澤,邢超,覃日升,等. 基于深度卷積去噪網(wǎng)絡(luò)的電能質(zhì)量擾動(dòng)識(shí)別方法[J] . 南方電網(wǎng)技術(shù),2022,16(12) :118-125.
[8] ZHAO Lihua, HONG Guo, WANG Zelong, et al.Research on fault vibration signal features of GIS disconnector based on EEMD and kurtosis criterion[J].IEEJ Transactions on Electrical and Electronic Engineering,2021,16(5) :677-686.
[9] YANG Lin, GUO Linming, ZHANG Wenhai, et al.Classification of multiple power quality disturbances by Tunable-Q wavelet transform with parameter selection[J].Energies,2022,15(9) :3428.
[10] DIVYALAKSHMI D, SUBRAMANIAM N P.Photovoltaic based DVR with power quality detection using wavelet transform[J].Energy Procedia,2017,117 :458-465.
[11] 王新,閆文源. 基于變分模態(tài)分解和 SVM 的滾動(dòng)軸承故障診斷[J]. 振動(dòng)與沖擊,2017,36(18) :252-256.
[12] PAN Haiyang, YANG Yu, LI Xin, et al.Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis[J].Mechanical Systems & Signal Processing,2019,114 :189-211.
[13] CHENG Jian, YANG Yu, HU Niaoqing, et al.A noise reduction method based on adaptive weighted symplectic geometry decomposition and its application in early gear fault diagnosis[J].Mechanical Systems and Signal Processing,2020,149(15) :107351.
[14] 鄭直,高崇一,宋金超,等. 基于 SGMD 敏感參數(shù)和 KFCMC 的滾動(dòng)軸承故障診斷方法[J] . 機(jī)床與液壓,2020,48(11) :189-193.
[15] 楊宇,程健,彭曉燕,等. 一種基于改進(jìn)辛幾何模態(tài)分解的復(fù)合故障診斷方法[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,47(2) :53-59.
[16] 鄭近德,應(yīng)萬(wàn)明,潘海洋,等. 基于改進(jìn)全息希爾伯特譜分析的旋轉(zhuǎn)機(jī)械故障診斷方法[J] . 機(jī)械工程學(xué)報(bào),2023,59(1) :162-174.
[17] CAI J, CAI Y, CAI H, et al.Feeder Fault Warning of Distribution Network Based on XGBoost[J].Journal of Physics:Conference Series,2020,1639(1) :1-6.
[18] CHAKRABORTY D, ELZARKA H.Early detection of faults in HVAC systems using an XGBoost model with a dynamic threshold[J].Energy and Buildings,2019,185(2) :326-344.
[19] LIU Yinming, LIU Lin, YANG Liu, et al.Measuring distance using ultra-wideband radio technology enhanced by extreme gradient boosting decision tree (XGBoost)[J].Automation in Construction,2021,126(1) :103678.
[20] WANG Zucheng, PENG Yanfeng, LIU Yanfei, et al.Photovoltaic power quality analysis based on the modulation broadband mode decomposition algorithm[J].Energies,2021,14(23) :1423798.
[21] 喻貞楷,王斌,閆墉,等. 多擾動(dòng)下微電網(wǎng)故障檢測(cè)方法[J] . 電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),2023,35(12) :151-158.