參考文獻(xiàn)
[1] 劉云鵬,許自強(qiáng),李剛,等. 人工智能驅(qū)動(dòng)的數(shù)據(jù)分析技術(shù)在電力變壓器狀態(tài)檢修中的應(yīng)用綜述[J]. 高電壓技術(shù),2019,45(2) :337-348.
[2] GUARDADAO J L, NAREDO J L, MORENO P, et al.A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis[J].IEEE Transactions on Power Delivery, 2001, 16(4) :643-647.
[3] DUVAL M, DEPABLA A.Interpretation of gas-inoil analysis using new IEC publication 60599 and IEC TC10 databases[J].IEEE Electrical Insulation Magazine, 2001, 17(2) :31-41.
[4] KIM Y M, LEE S J, SEO H D, et al.Development of dissolved gas analysis(DGA) expert system using new diagnostic algorithm for oil-immersed transformers[C]//2012 IEEE International Conference on Condition Monitoring and Diagnosis, 2012 :365-369.
[5] ROGERS R R.IEEE and IEC codes to interpret incipient faults in transformers, using gas in oil analysis[J].IEEE Transactions on Electrical Insulation, 1978,13(5) :349-354.
[6] MOLLMANN A, PAHLAVANPOUR B.New guidelines for interpretation of dissolved gas analysis in oilfilled transformers[J].Electra, 1999, 186 :31-51.
[7] LEE S, KIM Y, SEO H, et al.New methods of DGA diagnosis using IEC TC 10 and related databases Part2:Application of relative content of fault gases[J].IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(2) :691-696.
[8] 謝樂(lè). 基于 DGA 和機(jī)器學(xué)習(xí)的變壓器故障診斷和狀態(tài)預(yù)測(cè)研究[D]. 成都:西南交通大學(xué),2022.
[9] 白星振,臧元,葛磊蛟,等. 變壓器故障診斷用油中溶解氣體征兆優(yōu)選方法[J] . 高電壓技術(shù),2023,49(9) :3864-3875.
[10] 謝樂(lè),衡熙丹,劉洋,等. 基于線性判別分析和分步機(jī)器學(xué)習(xí)的變壓器故障診斷[J]. 浙江大學(xué)學(xué)報(bào)(工學(xué)版), 2020,54(11) :2266-2272.
[11] 李云淏,咸日常,張海強(qiáng),等. 基于改進(jìn)灰狼算法與最小二乘支持向量機(jī)耦合的電力變壓器故障診斷方法[J].電網(wǎng)技術(shù),2023,47(4) :1470-1477.
[12] ZHANG Y, LI X, ZHENG H, et al.A fault diagnosis model of power transformers based on dissolved gas analysis features selection and improved krill herd algorithm optimized support vector machine[J].IEEE Access, 2019, 7 :102803-102811.
[13] 朱莉,汪小豪,李豪,等. 不平衡樣本下基于變異麻雀搜索算法和改進(jìn) SMOTE 的變壓器故障診斷方法[J].高電壓技術(shù),2023,49(12) :4993-5001.
[14] KONONENKO I.Estimating Attributes:Analysis and Extensions of RELIEF[C]//European Conference on Machine Learning, 1994 :171-182.
[15] DE SILVA V , TENENBAUM J B . Global versus local methods in nonlinear dimensionality reduction[C]//Neural Information Processing Systems, 2002 :721-728.
[16] MIRJALILI S, LEWIS A.The whale optimization algorithm[J].Advances in Engineering Software,2016, 95(12) :51-67.
[17] SUYKENS J A K, VANDEWALLE J.Least squares support vector machine classifiers[J].Neural Processing Letters, 1999, 9(3) :293-300.
[18] 張又文,馮斌,陳頁(yè),等. 基于遺傳算法優(yōu)化 XGBoost 的油浸式變壓器故障診斷方法[J] . 電力自動(dòng)化設(shè)備,2021,41(2) :200-206.