Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 最新索引

基于預(yù)測(cè)-決策框架的綜合能源系統(tǒng)優(yōu)化

來源:電工電氣發(fā)布時(shí)間:2025-01-23 15:23 瀏覽次數(shù):22

基于預(yù)測(cè)-決策框架的綜合能源系統(tǒng)優(yōu)化

崔國(guó)偉
(國(guó)網(wǎng)徐州市銅山區(qū)供電公司,江蘇 徐州 221000)
 
    摘 要:隨著可再生能源滲透率的不斷提高,大量的不確定性設(shè)備給綜合能源系統(tǒng)(IES)的安全高效運(yùn)行帶來了威脅。一般解決不確定型優(yōu)化問題的過程是,依靠大量歷史數(shù)據(jù)并輔助一些人工智能技術(shù)進(jìn)行可再生能源的預(yù)測(cè)分析,但通常預(yù)測(cè)和決策分開進(jìn)行的過程會(huì)由于預(yù)測(cè)誤差過大而導(dǎo)致模型的優(yōu)化目標(biāo)產(chǎn)生嚴(yán)重惡化。提出了基于K-最近鄰(KNN)算法和魯棒優(yōu)化(RO)相結(jié)合的預(yù)測(cè)- 決策方法改進(jìn) IES 的不確定型優(yōu)化問題。通過 KNN+ 最小體積(KMV)橢球集的方法構(gòu)建 KMV 橢球集,求解在該集合下的兩階段魯棒模型,得到最優(yōu)的多能流解。其中,為了平衡 IES 的魯棒性和經(jīng)濟(jì)性,采用魯棒可調(diào)參數(shù)表示不確定集的合適水平。通過仿真算例分析,證明了 KMV 橢球集的區(qū)間大小與可調(diào)參數(shù)的變化規(guī)律,以及該集合的優(yōu)越性。
    關(guān)鍵詞: 綜合能源系統(tǒng);機(jī)器學(xué)習(xí);魯棒優(yōu)化;不確定型優(yōu)化
    中圖分類號(hào):TM73     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2025)01-0026-10
 
The Optimization of Integrated Energy Systems Based on
Predictive & Prescriptive Framework
 
CUI Guo-wei
(State Grid Xuzhou Tongshan District Power Supply Company, Xuzhou 221000, China)
 
    Abstract: With the increasing permeability of renewable energy, a large number of uncertain devices pose a threat to the safe and efficient operation of the integrated energy system (IES). In general, solving the uncertainty optimization problem relies on a large amount of historical data, and assists some artificial intelligence technology to predict the analysis of renewable energy, but the usual process of separate prediction and decision making can produce serious deterioration of the model's optimization objective due to excessive prediction errors. Therefore, this paper proposes a prediction-decision method based on K-nearest neighbor (KNN) and robust optimization(RO) to improve the uncertainty optimization problem of IES. Then, the KMV ellipsoid set is constructed using the KNN + minimum volume (KMV) ellipsoid set method, and the two-stage robust model under the set is solved to obtain the optimal multi-energy flow solution. In order to balance the robustness and economy of IES, robust adjustable parameters are used to represent the appropriate level of the uncertainty set. Finally, through the simulation example,the change rule of the interval size and the adjustable parameters of the KMV ellipsoid set is proved, and the superiority of the set is proved.
    Key words: integrated energy system; machine learning; robust optimization; uncertain optimization
 
參考文獻(xiàn)
[1] 張?zhí)K涵,顧偉,俞睿智,等. 綜合能源系統(tǒng)建模與仿真:綜述、思考與展望[J] . 電力系統(tǒng)自動(dòng)化,2024,48(17) :1-21.
[2] 卓振宇,張寧,謝小榮,等. 高比例可再生能源電力系統(tǒng)關(guān)鍵技術(shù)及發(fā)展挑戰(zhàn)[J] . 電力系統(tǒng)自動(dòng)化,2021,45(9) :171-191.
[3] 張金良,劉子毅. 基于混合模型的超短期風(fēng)速區(qū)間預(yù)測(cè)[J]. 電力系統(tǒng)保護(hù)與控制,2022,50(22) :49-58.
[4] 盛四清,張立. 考慮風(fēng)光荷預(yù)測(cè)誤差的電力系統(tǒng)經(jīng)濟(jì)優(yōu)化調(diào)度[J] . 電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),2017,29(9) :80-85.
[5] BEN-TAL A, GHAOUI L E, NEMIROVSKI A.Robust Optimization(Princeton Series in Applied Mathematics)[M].Princeton :Princeton University Press,2009.
[6] DRAGOON K, MILLIGAN M.Assessing wind integration costs with dispatch models: A case study of PacifiCorp[C]//American Wing Energy Association Conference,2003.
[7] SEOKHO S, SI-DOEK O, HO-YOUNG K.Wind turbine power curve modeling using maximum likelihood estimation method[J].Renewable Energy,2019,136(6) :1164-1169.
[8] HUA W, JIANG J, Sun H, et al.Data-driven prosumer-centric energy scheduling using convolutional neural networks[J].Applied Energy,2022,308(15) :118361.
[9] 彭虹橋,顧潔,宋柄兵,等. 基于多維變量篩選- 非參數(shù)組合回歸的長(zhǎng)期負(fù)荷概率預(yù)測(cè)模型[J] . 電網(wǎng)技術(shù),2018,42(6) :1768-1775.
[10] MORADZADEH A, MOHAMMADI-IVATLOO B, ABAPOUR M,et al.Heating and Cooling Loads Forecasting for Residential Buildings Based on Hybrid Machine Learning Applications: A Comprehensive Review and Comparative Analysis[J].IEEE Access,2022(10) :2196-2215.
[11] TAN Z, DE G, LI M, et al.Combined electricityheat-cooling-gas load forecasting model for integrated energy system based on multitask learning and least square support vector machine[J].Journal of Cleaner Production,2019,248(14) :119252.
[12] LI T, SUN H, SHI Z, et al.Cooperative optimal configuration of integrated energy system considering uncertainty factors of sourceload[J].IOP Conference Series: Earth and Environmental Science,2022,983(1) :012119.
[13] ALTMAN N S.An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression[J].The American Statistician,1992,46(3) :175-185.
[14] WANG J, XU X, LI H, et al.Two-stage robust optimization of thermal-ESS units scheduling under wind uncertainty[J].Energy Reports,2022,8:1147-1155.
[15] LI S, HAN W, LIU L.Robust Optimization of the Hub Location Problem for Fresh Agricultural Products with Uncertain Demand[J].IEEE Access,2022(10) :41902-41913.
[16] TAN B F, CHEN H Y, ZHENG X D, et al.Two-stage robus toptimization dispatch for multiple microgrids with electric vehicle loads based on a novel datadriven uncertainty set[J].International Journal of Electrical Power & Energy Systems,2022,134 :107359.
[17] JIN X, WU Q, JIA H, et al.Optimal Integration of Building Heating Loads in Integrated Heating/Electricity Community Energy Systems :A Bi-Level MPC Approach[J].IEEE Transactions onSustainable Energy,2021,12(3) :1741-1754.
[18] JIANG S L, PENG G, BOGLE I D L, et al.A twostage robust optimization approach for flexible oxygen distribution under uncertainty in integrated iron and steel plants[J].Applied Energy,2022,306 :118022.
[19] VATANI B, CHOWDHURY B, DEHGHAN S, et al.A critical review of robust self-scheduling for generation companies under electricity price uncertainty[J].International Journal of Electrical Power & Energy Systems,2018,97 :428-439.
[20] WU W, WANG K, LI G, et al.Modeling Ellipsoidal Uncertainty Set Considering Conditional Correlation of Wind Power Generation[J].Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering,2017,37(9) :2500-2507.
[21] QIU Z , JIANG N . An ellipsoidal Newton’s iteration method of nonlinear structural systems with uncertain-but-bounded parameters[J].Computer Methods in Applied Mechanics and Engineering,2021,373(1) :113501.
[22] KURYATNIKOVA O , GHADDAR B , MOLZAHN D K .Adjustable Robust Two-Stage Polynomial Optimization with Application to AC Optimal Power Flow [EB/OL] . (2021-04-07) [2024-07-15] .https://doi.org/10.48550/arXiv.2014.03107arXiv preprint.
[23] 劉一欣,郭力,王成山. 微電網(wǎng)兩階段魯棒優(yōu)化經(jīng)濟(jì)調(diào)度方法[J] . 中國(guó)電機(jī)工程學(xué)報(bào),2018,38(14) :4013-4022.
[24] LI D, ZHANG S.Optimal Design of Distributed Energy Resource Systems under Uncertainties Based on Two-Stage Robust Optimization[J].Journal of Thermal Science,2021,30(1) : 51-63.
[25] OHMORI S.A Predictive Prescription Using Minimum Volume k-Nearest Neighbor Enclosing Ellipsoid and Robust Optimization[J].Mathematics,2021,9(2) :119.
[26] JI Y, XU Q, ZHAO J, et al.Day-ahead and intraday optimization for energy and reserve scheduling under wind uncertainty and generation outages[J].Electric Power Systems Research,2021, 195 :107133.
[27] KOCUK B , DEY S S , SUN X A , Strong SOCP Relaxations for the Optimal Power Flow Problem[J].Operations Research,2016,64(6) :1177-1196.
[28] LIU X, WU J, JENKINS N, et al.Combined analysis of electricity and heat networks[J].Applied Energy,2016,162 :1238-1250.
[29] ZENG B , ZHAO L . Solving two-stage robust optimization problems using a column-andconstraint generation method[J].Operations Research Letters,2013,41(5) :457-461.
[30] 朱嘉遠(yuǎn),劉洋,許立雄,等. 考慮風(fēng)電消納的熱電聯(lián)供型微網(wǎng)日前魯棒經(jīng)濟(jì)調(diào)度[J] . 電力系統(tǒng)自動(dòng)化,2019,43(4) :40-48.
[31] ZHENG L, LI Y, WEI C, et al.A data-driven method for operation pattern analysis of the integrated energy microgrid[J].Energy Conversion and Management: X,2021,11 :100092.
[32] 李斯,周任軍,童小嬌,等. 基于盒式集合魯棒優(yōu)化的風(fēng)電并網(wǎng)最大裝機(jī)容量[J] . 電網(wǎng)技術(shù),2011,35(12) :208-213.
[33] VENZKE A, HALILBASIC L, MARKOVIC U, et al.Convex relaxations of chance constrained AC optimal power flow[J].IEEE Transactions on Power Systems,2018,33(3) :2829-2841.
[34] WANG Shuai, LI Bin, LI Guanzheng, et al. Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration[J].Applied Energy,2021,292 :116851.