Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 最新索引

同步發(fā)電機轉(zhuǎn)子繞組匝間短路故障智能檢測

來源:電工電氣發(fā)布時間:2025-04-03 09:03 瀏覽次數(shù):1

同步發(fā)電機轉(zhuǎn)子繞組匝間短路故障智能檢測

薛彪,袁斌華
(隴東學(xué)院 新能源學(xué)院,甘肅 慶陽 745000)
 
    摘 要:傳統(tǒng)固定頻率范圍檢測方法因頻帶劃分冗余,難以有效捕捉故障特征,進而削弱了檢測的靈敏度、速度和定位精度。提出一種基于小波包熵的同步發(fā)電機轉(zhuǎn)子繞組匝間短路故障智能檢測方法,采用小波包分解技術(shù),將匝間短路信號分解至不同頻帶,并通過形態(tài)學(xué)濾波有效降噪,提升信號質(zhì)量。引入熵值理論,通過計算各頻帶信號的樣本熵、多尺度熵及小波包能量譜相對熵,篩選出熵值變化顯著的頻帶,有效剔除冗余頻帶,精確提取出故障特征,顯著增強檢測的靈敏度。結(jié)合卷積神經(jīng)網(wǎng)絡(luò)對提取的特征進行分類,實現(xiàn)故障的智能檢測。實驗驗證顯示,該方法相較于傳統(tǒng)方法,在提升故障檢測靈敏度、加速檢測流程及確保故障精準定位方面展現(xiàn)出顯著優(yōu)勢,為同步發(fā)電機轉(zhuǎn)子繞組故障診斷提供了一種高效、可靠的解決方案,有效克服了傳統(tǒng)方法的局限性。
    關(guān)鍵詞: 小波包分解;熵值計算;同步發(fā)電機;匝間短路;故障檢測
    中圖分類號:TM341 ;TM713     文獻標識碼:B     文章編號:1007-3175(2025)03-0053-07
 
Intelligent Detection of Interturn Short Circuit Fault in
Synchronous Generator Rotor Winding
 
XUE Biao, YUAN Bin-hua
(College of New Energy, Longdong University, Qingyang 745000, China)
 
    Abstract: The traditional fixed frequency range detection method is difficult to effectively capture fault characteristics due to redundant frequency band division, which weakens the sensitivity, speed, and positioning accuracy of detection. In response to the above issues, this study proposes an intelligent detection method for interturn short circuit faults in synchronous generator rotor windings based on wavelet packet entropy.Firstly, wavelet packet decomposition technology is used to decompose the interturn short circuit signal into different frequency bands,and morphological filtering is used to effectively reduce noise and improve signal quality. Then, the entropy theory is introduced to calculate the sample entropy, multiscale entropy, and wavelet packet energy spectrum relative entropy of each frequency band signal, screen out the frequency bands with significant entropy changes, effectively eliminate redundant frequency bands, accurately extract fault features, and significantly enhance the sensitivity of detection. Combining convolutional neural networks to classify extracted features and achieve intelligent fault detection.Experimental verification shows that compared to traditional methods, this method exhibits significant advantages in improving fault detection sensitivity, accelerating detection processes, and ensuring accurate fault localization. It provides an efficient and reliable solution for synchronous generator rotor winding fault diagnosis, effectively overcoming the limitations of traditional methods.
    Key words: wavelet packet decomposition; entropy calculation; synchronous generator; interturn short circuit; fault detection
 
參考文獻
[1] 黃楊森. 基于 MSET 的汽輪發(fā)電機轉(zhuǎn)子繞組匝間短路故障診斷[J]. 發(fā)電設(shè)備,2024,38(3) :182-188.
[2] 孫浩, 劉馳程, 傅裕, 等. 基于行波理論的檢測技術(shù)在轉(zhuǎn)子繞組故障診斷中的應(yīng)用[J] . 電工技術(shù),2022(9) :43-45.
[3] 譚尚仁,楊增杰,高境,等. 重復(fù)脈沖法在凸極轉(zhuǎn)子繞組匝間短路檢測中的應(yīng)用探索[J] . 水力發(fā)電,2024,50(6) :72-78.
[4] 付強. 基于 XALO-SVM 的同步電機轉(zhuǎn)子繞組匝間短路故障診斷方法[J] . 黑龍江科技大學(xué)學(xué)報,2024,34(1) :125-131.
[5] 徐俊元,胡磊,王曉劍,等. 基于 PCC-SVM 的發(fā)電機轉(zhuǎn)子匝間短路在線監(jiān)測法[J]. 大電機技術(shù),2023(6):35-41.
[6] 馮宇哲,李衛(wèi)軍,楊立川.660 MW 發(fā)電機轉(zhuǎn)子繞組匝間短路故障檢測與處理[J]. 電工電氣,2023(7) :46-50.
[7] 潘劍南,李浩良. 一起基于重復(fù)脈沖法的發(fā)電機轉(zhuǎn)子繞組匝間短路故障分析[J] . 黑龍江電力,2022,44(5) :402-406.
[8] 王云峰,冀順林. 一起發(fā)電機轉(zhuǎn)子繞組動態(tài)匝間短路故障的診斷與分析[J]. 電工技術(shù),2021(17) :170-172.
[9] 鄧方雄,楊東,劉敏,等. 大型水輪發(fā)電機轉(zhuǎn)子匝間短路在線監(jiān)測研究[J] . 設(shè)備管理與維修,2021(11) :27-28.
[10] 李俊卿,李斯璇,陳雅婷,等. 一種基于 CGAN-CNN 的同步電機轉(zhuǎn)子繞組匝間短路故障診斷方法[J]. 電力自動化設(shè)備,2021,41(8) :169-174.