基于LGBM的光伏發(fā)電輸出功率異常檢測方法
劉繼輝
(國華(江蘇)風電有限公司,江蘇 鹽城 224200)
摘 要:光伏發(fā)電系統(tǒng)輸出功率具有很大的復雜性,當前短期異常檢測因特征提取單一、缺乏針對性,導致結(jié)果誤差增大。提出基于輕量級梯度提升機(LGBM)的光伏發(fā)電輸出功率異常檢測方法。該方法根據(jù)當前檢測需求,提取并合并處理輸出功率異常特征,全面捕捉系統(tǒng)運行異常模式;接著基于 LGBM 建立輸出功率異常位置辨識方法,增強檢測針對性,并結(jié)合動態(tài)化持續(xù)檢測實現(xiàn)異常處理。以 K 光伏發(fā)電站作為測試的目標對象,設(shè)定傳統(tǒng) XGBoost 與 GRU 光伏發(fā)電輸出功率異常檢測方法、傳統(tǒng)子帶處理與相關(guān)系數(shù)光伏發(fā)電輸出功率異常檢測方法為對比方法,與所提方法分別對該發(fā)電輸出功率進行異常檢測。測試結(jié)果表明,該方法在不過多增加復雜度的前提下,異常檢測絕對誤差較小,檢測針對性更強,能在復雜背景下避免干擾,提升檢測精度與效率。
關(guān)鍵詞: 輕量級梯度提升機;光伏發(fā)電;輸出功率;異常檢測
中圖分類號:TM615 文獻標識碼:A 文章編號:2097-6623(2026)01-0067-05
Anomaly Detection Method for Photovoltaic Power Generation
Output Power Based on LGBM
LIU Ji-hui
(Guohua (Jiangsu) Wind Power Co., Ltd., Yancheng 224200, China)
Abstract: The output power of photovoltaic power generation systems is highly complex. Current short-term anomaly detection suffers from increased result errors due to single feature extraction and lack of targeting. An anomaly detection method for photovoltaic power generation output power based on light gradient boosting machine (LGBM) is proposed. According to current detection requirements, this method extracts and merges abnormal features of output power to comprehensively capture abnormal operation modes of the system; then establishes an output power anomaly location identification method based on LGBM to enhance detection targeting, and combines dynamic continuous detection to achieve anomaly handling. Taking K Photovoltaic Power Station as the test object, traditional XGBoost and GRUbased anomaly detection methods for photovoltaic output power, as well as traditional sub-band processing and correlation coefficient-based methods, are set as comparison methods, and anomaly detection on the power output is conducted respectively with the proposed method.Test results show that on the premise of not excessively increasing complexity, the proposed method has smaller absolute error of anomaly detection, stronger detection targeting, can avoid interference in complex backgrounds, and improve detection accuracy and efficiency.
Key words: light gradient boosting machine; photovoltaic power generation; output power; anomaly detection
參考文獻
[1] 李光環(huán),楊小天,劉訓釗.XGBoost 與 GRU 模型在發(fā)電功率預測中的應用[J]. 福建電腦,2024,40(6) :21-26.
[2] 陳剛,胡凱凱,陳亞楠,等. 基于子帶處理與相關(guān)系數(shù)的風電機組功率異常波動檢測[J] . 控制與信息技術(shù),2024(2) :32-39.
[3] 朱振軍,劉曉,俞碧霞,等. 汽車尾氣熱電發(fā)電系統(tǒng)最大功率檢測算法研究[J]. 內(nèi)燃機與配件,2024(9):51-53.
[4] 牛偉明. 光伏發(fā)電系統(tǒng)中陰影效應與遮擋對發(fā)電效率的影響研究[J]. 光源與照明,2024(6) :111-113.
[5] 蔡昌春,范靖浩,李源佳,等. 基于 TPA-MBLSTM 模型的超短期風電功率預測[J] . 電力科學與技術(shù)學報,2024,39(1) :47-56.
[6] 張蕊,李安燚,劉世巖,等. 基于波動特征提取下云層分型的短期光伏發(fā)電功率預測方法[J] . 太陽能學報,2024,45(11) :330-342.
[7] 吳文寶,封永銘,金聲超,等. 基于遺傳算法的風電機組發(fā)電異常檢測[J]. 信息技術(shù)與信息化,2023(5):199-203.
[8] 金磊,魏唯,陳龍,等. 硅基溝槽功率器件漏電檢測及異常分析[J]. 電子工業(yè)專用設(shè)備,2022,51(4) :39-42.
[9] 陳宇軒,張耀,徐楊,等. 基于 Boosting 集成框架的新能源發(fā)電功率異常值檢測方法[J] . 電網(wǎng)技術(shù),2023,47(8) :3261-3268.
[10] 薛安成,顧雷,蔣正威,等. 功率因數(shù)角偏差導致的線路無功量測異常及其檢測方法[J]. 中國電機工程學報,2023,43(9) :3342-3353.