Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN2097-6623

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

基于PSO-RF的小電流接地系統(tǒng)單相故障選線方法

來源:電工電氣發(fā)布時間:2026-01-26 10:26 瀏覽次數(shù):0

基于PSO-RF的小電流接地系統(tǒng)單相故障選線方法

鐘靈毓秀,鄭吳筱添,靳玉潔,吳夢宇,鐘建偉,廖紅華
(湖北民族大學(xué) 智能科學(xué)與工程學(xué)院,湖北 恩施 445000)
 
    摘 要:針對配電網(wǎng)小電流接地系統(tǒng)發(fā)生單相接地故障時選線過程易受噪聲干擾、選線精度較低的問題,提出了一種多判據(jù)融合的選線方法。該方法結(jié)合快速傅里葉變換(FFT)與變分模態(tài)分解(VMD)技術(shù),提取各線路零序電流的三種特征分量,構(gòu)建多維度輸入特征;在此基礎(chǔ)上,引入粒子群算法優(yōu)化的隨機(jī)森林分類器(PSO-RF),以故障線路為輸出標(biāo)簽對模型進(jìn)行訓(xùn)練,實現(xiàn)對新故障數(shù)據(jù)的準(zhǔn)確線路判別。利用 MATLAB/Simulink 軟件建立單相接地故障仿真模型進(jìn)行仿真實驗,驗證所提方法的有效性,并與現(xiàn)有算法進(jìn)行對比。結(jié)果表明,所提方法在選線準(zhǔn)確率方面具有顯著優(yōu)越性,展現(xiàn)出良好的工程應(yīng)用潛力。
    關(guān)鍵詞: 故障選線;小電流接地;粒子群算法;隨機(jī)森林分類器;多判據(jù)融合
    中圖分類號:TM711     文獻(xiàn)標(biāo)識碼:B     文章編號:2097-6623(2026)01-0045-06
 
Method for Single-Phase Fault Line Selection in Low-Current
Grounding Systems Based on PSO-RF
 
ZHONG Ling-yuxiu, ZHENG Wu-xiaotian, JIN Yu-jie, WU Meng-yu, ZHONG Jian-wei, LIAO Hong-hua
(College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China)
 
    Abstract: In response to the issues of susceptibility to noise interference and relatively low line selection accuracy during single-phase grounding faults in the low-current grounding systems of distribution networks, this paper proposes a multi-criteria fusion-based fault line selection method. This approach integrates fast fourier transform (FFT) and variational mode decomposition (VMD) techniques to extract three characteristic components of the zero-sequence current from each line, thereby constructing multi-dimensional input features. On this basis, the random forest classifier optimized by the particle swarm optimization algorithm (PSO-RF) is proposed in this study. The model is trained using the faulty line as the output label, enabling accurate identification of fault lines in new fault data. A single-phase grounding fault simulation model was established, using MATLAB/Simulink software for simulation experiments to validate the effectiveness of the proposed method, and comparisons are made with existing algorithms. The results demonstrate that the proposed method exhibits significant superiority in fault line selection accuracy, showing promising potential for engineering applications.
    Key words: fault line selection; low-current grounding; particle swarm optimization; random forest classifier; multi-criteria fusion
 
參考文獻(xiàn)
[1] WAN Guangfen,XU Xuekun.Research on singlephase grounding detection method in smallcurrent grounding systems based on image recognition[J].Frontiers in Energy Research,2024(12) :1473472.
[2] 高文利,席東民,王晗,等. 基于特征融合與 ELM 的小電流接地選線新方法[J] . 電子測量技術(shù),2023,46(13) :176-184.
[3] NIU Lin, WU Guiqing, XU Zhangsheng.Single-Phase Fault Line Selection in Distribution Network Based on Signal Injection Method[J].IEEE Access,2021(9) :21567-21578.
[4] 束洪春,龔振,田鑫萃,等. 基于故障特征頻帶及形態(tài)譜的單相接地故障選線[J] . 電網(wǎng)技術(shù),2019,43(3) :1041-1048.
[5] 曾照新. 基于零序電流差暫態(tài)小波能量的故障選線新方法[J]. 電工技術(shù),2019(3) :16-18.
[6] 譚業(yè)濤,向小民,張千千. 基于經(jīng)驗?zāi)B(tài)分解和 Hausdorff 距離的小電流接地故障選線[J]. 電力學(xué)報,2019,34(5) :483-489.
[7] 殷浩然,苗世洪,郭舒毓,等. 基于 S 變換相關(guān)度和深度學(xué)習(xí)的配電網(wǎng)單相接地故障選線新方法[J]. 電力自動化設(shè)備,2021,41(7) :88-96.
[8] 徐海燕,吳浩,李棟,等. 基于門控循環(huán)單元神經(jīng)網(wǎng)絡(luò)的配電網(wǎng)故障選線[J] . 電力系統(tǒng)及其自動化學(xué)報,2022,34(6) :89-97.
[9] 孫冰,李長星. 基于 BP 神經(jīng)網(wǎng)絡(luò)算法的小電流接地選線研究[J]. 電工技術(shù),2024(8) :139-143
[10] 周宣. 融合 GWO 算法與 BP 神經(jīng)網(wǎng)絡(luò)的小電流接地選線裝置研究[J] . 自動化技術(shù)與應(yīng)用,2025,44(5) :155-159.
[11] 朱曉紅,楊偉榮,張蓉,等. 基于 RNN-LSTM 神經(jīng)網(wǎng)絡(luò)的小電流接地故障選線方法[J] . 高壓電器,2023,59(7) :213-220.
[12] 孫其東,張開如,劉建,等. 基于五次諧波和小波重構(gòu)能量的配電網(wǎng)單相接地故障的選線方法研究[J]. 電測與儀表,2016,53(16) :1-4.
[13] 劉謀海,方濤,姜運(yùn). 基于高頻分量相關(guān)度分析的故障選線方法[J] . 電力系統(tǒng)及其自動化學(xué)報,2017,29(2) :101-106.
[14] 田錄林,王偉博,田琦,等. 基于 VMD 能量相對熵的配電網(wǎng)單相接地故障選線方法[J] . 電氣應(yīng)用,2019,38(3) :47-53.
[15] CHEN Ming, XU Pengcheng, LIU Zepeng, et al.Air pollution prediction based on optimized deep learning neural networks:PSO-LSTM[J].Atmospheric Pollution Research,2025,16(3) :102413.
[16] 王爍棪,鄭剛,張旭. 基于 PSO-RF 算法的三坐標(biāo)測量機(jī)熱誤差預(yù)測[J] . 組合機(jī)床與自動化加工技術(shù),2025(8) :31-36.