Abstract: Against the backdrop of energy structure transition driven by the dual carbon goals and the large-scale grid integration of new energy sources, the flexible peak regulation capability of 350 MW combined heat and power (CHP) units is crucial for power system stability due to their efficient energy utilization and stable output characteristics. This paper elaborates on the importance of CHP units in improving energy efficiency, facilitating energy conservation and emission reduction, and ensuring electricity and heat supply, analyzes the necessity of flexible peak regulation for power system stability, and points out that they can maintain power balance through multi-dimensional regulation. It sorts out the current status of flexible peak regulation technologies for 350 MW units, including the innovation and application of technologies such as circulating fluidized bed composite combustion, combustion optimization adjustment, and wide-load operation design. The paper further deeply analyzes the technical challenges such as equipment safety, heat-power decoupling, low-load efficiency and emissions, as well as issues like the balance between renovation costs and benefits, the impact of electricity market pricing mechanisms, and policy management. It prospects the development trends, emphasizing the importance of the integration of intelligence and automation, the research and development of new peak regulation technologies, the collaborative integration of multiple technologies, and the coordinated development with new energy, providing a reference for improving unit peak regulation capabilities and promoting the green transition of energy.
Key words: dual carbon; combined heat and power; flexible peak regulation; power system stability; coordinated development of new energy
參考文獻
[1] 沙雨桐,劉培,李政. 考慮熱網(wǎng)動態(tài)特性的熱電聯(lián)產(chǎn)機組運行優(yōu)化[J] . 動力工程學報,2025,45(12) :2141-2150.
[2] 張國柱,張鈞泰,馬國鋒,等. 基于吸收式熱泵解耦的燃煤熱電聯(lián)產(chǎn)機組輔助新能源消納深度調(diào)峰特性研究[J]. 動力工程學報,2025,45(11) :1955-1965.
[3] 孔德安,王瑋,林威,等. 基于廣義預測控制的熱電聯(lián)產(chǎn)機組變工況切換控制策略[J] . 熱能動力工程,2025,40(9) :96-106.
[4] 張攀,林顯超,劉巖,等. 新型熱電聯(lián)產(chǎn)經(jīng)濟性評價模型與應用分析[J] . 汽輪機技術,2025,67(4) :311-316.
[5] 陳佳明,許珈瑋,田秀君. 熱電聯(lián)產(chǎn)機組碳排放關聯(lián)影響因素及經(jīng)濟性分析[J] . 化工進展,2025,44(S1) :92-101.
[6] 周天羽,張一農(nóng),徐鋼,等. 考慮調(diào)峰輔助服務收益的耦合儲熱罐熱電聯(lián)產(chǎn)機組運行調(diào)度研究[J]. 熱力發(fā)電,2025,54(5) :92-101.
[7] 孫健,吳寶鋼,王國順,等. 熱電聯(lián)產(chǎn)機組靈活性提升方法研究綜述[J] . 動力工程學報,2025,45(4) :626-634.
[8] 邱志勇,莫愿斌. 基于改進雪雁算法的熱電聯(lián)產(chǎn)系統(tǒng)經(jīng)濟調(diào)度優(yōu)化[J] . 現(xiàn)代電子技術,2025,48(6) :127-135.
[9] 王瑋,王子欣,孔德安,等. 靈活性驅動下的熱電聯(lián)產(chǎn)機組多目標協(xié)同控制策略[J] . 動力工程學報,2024,44(12) :1907-1915.
[10] 陳思,楊宏欣,王翀,等. 源荷置信度水平下光伏光熱耦合熱電聯(lián)產(chǎn)系統(tǒng)的調(diào)度優(yōu)化[J] . 太陽能學報,2024,45(11) :352-359.
[11] 熊涌盛,劉明,嚴俊杰. 供工業(yè)蒸汽熱電聯(lián)產(chǎn)機組滑參數(shù)運行的靈活性與經(jīng)濟性分析[J] . 工程熱物理學報,2024,45(11) :3262-3268.
[12] 王唯鏵,高明明,王勇權,等.350 MW 熱電聯(lián)產(chǎn)循環(huán)流化床機組負荷響應特性[J] . 潔凈煤技術,2024,30(9) :102-110.
[13] 高新勇,鄭立軍,喻珮,等. 熱電聯(lián)產(chǎn)電站復雜供熱系統(tǒng)的熱電負荷智能分配研究[J] . 熱能動力工程,2024,39(8) :86-93.
[14] 劉含笑,單思珂,方建,等. 熱電聯(lián)產(chǎn)的產(chǎn)品碳足跡量化與評價[J] . 化工進展,2025,44(7) :4233-4240.
[15] 王欣,崔承剛,王想想,等. 基于安全強化學習的熱電聯(lián)產(chǎn)機組經(jīng)濟調(diào)度策略研究[J] . 系統(tǒng)仿真學報,2025,37(4) :968-981.
[16] 王秋杰,亓浩,譚洪,等. 考慮碳市場風險的熱電聯(lián)產(chǎn)虛擬電廠低碳調(diào)度[J] . 電力自動化設備,2024,44(10) :8-15.