改進黑洞粒子群算法在電力系統環(huán)保經濟調度中的應用
宗超凡,代奇跡,趙海麗
(貴州大學 電氣工程學院,貴州 貴陽 550000)
摘 要: 針對電力系統中的環(huán)保經濟調度問題,采用了一種改進隨機黑洞粒子群算法進行優(yōu)化計算。該算法通過引入隨機黑洞策略、慣性權重和學習因子動態(tài)更新及小概率隨機變異改進了粒子群算法,提高了全局搜索能力,穩(wěn)定了計算結果,加快了收斂速度。通過對IEEE30 系統仿真計算,結果驗證了該算法的有效性和優(yōu)越性,系統的經濟性和電能質量都得到了提升。
關鍵詞: 隨機黑洞策略;動態(tài)更新技術;小概率隨機變異;環(huán)保經濟調度
中圖分類號:TM744 文獻標識碼:A 文章編號:1007-3175(2016)01-0033-04
Application of Improved Black Hole Particle Swarm Optimization Algorithm in Environmental Economic Dispatch of Power System
ZONG Chao-fan, DAI Qi-ji, ZHAO Hai-li
(The Electrical Engineering College, Guizhou University, Guiyang 550000, China)
Abstract: In allusion to the problem of environmental economic dispatch in power system, this paper proposed a kind of improved random black particle swarm optimization algorithm to carry out optimal computation. This paper introduced random black hole strategy,dynamic updates of inertia weight and learning factor, small probability random mutation to improve the particle swarm optimization algorithm and raised the global searching ability, stability of the results and acceleration of the convergence rate. The proposed algorithm is used to calculate the environmental economic dispatch in IEEE30 system. The simulation results show the effectiveness and superiority of this algorithm, and the power system has more economical efficiency and better power quality.
Key words: random black hole strategy; dynamic updating technology; small probability random mutation; environmental economic dispatch
參考文獻
[1] 劉自發(fā),張建華. 一種求解電力系統經濟負荷問題的改進微分進化算法[J]. 中國電機工程學報,2008,28(10):100-105.
[2] 周任軍,李紹金,李紅英,等. 空間粒子群優(yōu)化算法及其在電力系統環(huán)保經濟負荷分配中的應用[J].電力自動化設備,2014,34(9):7-12.
[3] 魯忠燕,鄧集祥,汪永紅. 基于免疫粒子群算法的電力系統無功優(yōu)化[J]. 電網技術,2008,32(24):55-59.
[4] 李如琦,李芝榮,王維志,等. 基于差分策略的多目標電力系統無功優(yōu)化[J]. 電網技術,2012,36(12):170-175.
[5] 冉曉洪,周任軍,李湘華,等. 計及等排性能系數的冷熱電多聯供環(huán)境經濟調度[J]. 電力系統自動化設備,2013,33(9):94-99.
[6] 何啟明. 基于改進粒子群算法的多目標無功優(yōu)化[D]. 成都:西南交通大學,2009.
[7] 程杉. 含分布式電源的配電網多目標優(yōu)化問題研究[D]. 重慶:重慶大學,2013.
[8] 亢國棟,孫偉,楊海群,等. 基于改進粒子群優(yōu)化算法的火電廠機組負荷分配[J]. 計算機測量與控制,2015,23(2):593-596.
[9] Zhang Junqi, Liu Kun, Tan Ying, et al.Random Black Hole Particle Swarm Optimization and Its Application[C]//Proceedings of IEEE Conference on Neural & Signal Processing,2008:359-365.
[10] Kalyanmoy Deb, Sachin Jain.Multi-Speed G e a r b o x D e s i g n U s i n g M u l t i - O b j e c t i v e
E v o l u t i o n a r y A l g o r i t h m s [ J ] . J o u r n a l o f Mechanical Design, 2003,125(3):609-619.
[11] Abido M A.Multi-objective particle swarm optimization for environmental economic dispatch problem[J].Electric Power Systems Research, 2003,79(7):1105-1113.