基于BP神經(jīng)網(wǎng)絡(luò)的新型電力諧波檢測(cè)方法
崔小白
(東南大學(xué) 電氣工程學(xué)院,江蘇 南京 210096)
摘 要:為了滿足電能質(zhì)量在實(shí)時(shí)檢測(cè)、動(dòng)態(tài)響應(yīng)和精確跟蹤等方面對(duì)諧波檢測(cè)方法的要求,利用神經(jīng)網(wǎng)絡(luò)可以快速充分逼近任意非線性的特點(diǎn),通過設(shè)計(jì)訓(xùn)練樣本,優(yōu)化系統(tǒng)參數(shù),給出了一種基于BP 神經(jīng)網(wǎng)絡(luò)的新型諧波檢測(cè)技術(shù)。運(yùn)用Matlab/Simulink 軟件構(gòu)建仿真模型,對(duì)信號(hào)處理過程和結(jié)果進(jìn)行了顯示,驗(yàn)證了該方法的可行性及優(yōu)越性。
關(guān)鍵詞:諧波電流檢測(cè);BP 神經(jīng)網(wǎng)絡(luò);有源電力濾波器;Matlab/Simulink 軟件
中圖分類號(hào):TM714.3 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1007-3175(2016)11-0011-05
New Type of Power Harmonic Detection Method Based on
Back-Propagation Neural Network
CUI Xiao-bai
(School of Electrical Engineering, Southeast University, Nanjing 210096, China)
Abstract: To meet the requirements of power quality in the aspects of real-time detection, dynamic response and precise tracking for harmonic
detection, this paper used the characteristics that the neutral network could quickly and fully approached to any nonlinear to optimize system parameters by the design of training samples. This paper gave a kind of new type of harmonic detection technique. Simulink in Matlab software was used to build the simulation model to display the signal treating process and results, which verifies the feasibility and superiority of the method.
Key words: harmonic current detection; back-propagation neutral network; active power filter; Matlab/Simulink software
參考文獻(xiàn)
[1] 王兆安,楊君,劉進(jìn)軍. 諧波抑制和無(wú)功功率補(bǔ)償[M]. 北京:機(jī)械工業(yè)出版社,2005.
[2] 胡志坤,姜斌,李哲彬,等. 三相有源電力濾波器滑模解耦控制方法研究[J]. 電機(jī)與控制學(xué)報(bào),2014,18(9):87-92.
[3] CHEN Z, XU D.Control and design issues of a DSP-based shunt active power filter for utility interface of diode rectifiers[C]// Applied Power Electronics Conference and Exposition, Anaheim, CA, USA,2004:197-204.
[4] JINTAKOSONUIT P, FUJITA H, AKAGI H.Control and performance of a fully-digital-controlled shunt active filter for installation on a power distribution system[J]. IEEE Transactions on Power Electronics,2002,17(1):132-140.
[5] 阮羚,謝齊家,高勝友,等. 人工神經(jīng)網(wǎng)絡(luò)和信息融合技術(shù)在變壓器狀態(tài)評(píng)估中的應(yīng)用[J]. 高電壓技術(shù),2014,40(3):822-828.
[6] 李虎.BP算法的改進(jìn)及其在PID 優(yōu)化控制中的應(yīng)用研究[D]. 西安:西安科技大學(xué),2012.
[7] 蔣金山,何春雄,潘少華. 最優(yōu)化計(jì)算方法[M].廣州:華南理工大學(xué)出版社,2008.
[8] 楊建國(guó),楊曉義,周虎. 神經(jīng)網(wǎng)絡(luò)補(bǔ)償器在基于影像測(cè)量?jī)x的運(yùn)動(dòng)控制系統(tǒng)中的應(yīng)用[J]. 東華大學(xué)學(xué)報(bào)( 自然科學(xué)版),2011,37(1):86-89.
[9] 馬草原,孫富華,朱蓓蓓,等. 神經(jīng)網(wǎng)絡(luò)算法的改進(jìn)及其在有源電力濾波器中的應(yīng)用[J]. 電力系統(tǒng)保護(hù)與控制,2015,43(24):142-148.
[10] 王好娜,畢志周,付志紅,等. 基于BP神經(jīng)網(wǎng)絡(luò)和線性神經(jīng)網(wǎng)絡(luò)的間諧波分析方法[J]. 高壓電器,2013,49(2):19-24.
[11] 王凱亮,曾江,王克英. 一種基于BP神經(jīng)網(wǎng)絡(luò)的諧波檢測(cè)方案[J]. 電力系統(tǒng)保護(hù)與控制,2013,41(17):44-48.