330 kV高壓輸電線路對人體穩(wěn)態(tài)電擊的研究
吳健1,金宇2,李鳴霄2,耿明昕1,申晨1
(1 國網(wǎng)陜西省電力公司電力科學(xué)研究院,陜西 西安 710001;2 西安交通大學(xué) 電氣工程學(xué)院,陜西 西安 710049)
摘 要:利用有限元法分析人體站在330 kV 輸電線路下方的穩(wěn)態(tài)電擊情況,仿真計算了試驗線路下方鐵棒的感應(yīng)電流,將實際測量結(jié)果與有限元計算結(jié)果進(jìn)行對比,誤差僅為7.09%,驗證了該方法的合理性。在有限元分析軟件COMSOL Multiphysics 建立330 kV 輸電線路的三維模型和簡化的人體三維模型,計算了人體感應(yīng)電位、感應(yīng)電流密度和表面畸變場強(qiáng)的分布,并定量地分析了絕緣狀態(tài)、線路高度以及人體在線下的位置對場量的影響。
關(guān)鍵詞:輸電線路;工頻電場;有限元法;人體
中圖分類號:TM726 文獻(xiàn)標(biāo)識碼:A 文章編號:1007-3175(2017)03-0006-06
Research of Steady Electric Shock on Human Body Under 330 kV Transmission Lines
WU Jian1, JIN Yu2, LI Ming-xiao2, GENG Ming-xin1, SHEN Chen1
(1 State Grid Shaanxi Electric Power Company Electric Power Research Institute, Xi’an 710001, China;
2 School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)
Abstract: The finite element method was used to calculate the steady electric shock on human body under the 330 kV transmission line. The simulation calculated the induced current of iron bar under the test line. By comparing the experimental result with the finite element calculation result, the error was just 7.09%, which verified the rationality of this method. This paper established a three-dimensional finite element model of transmission lines and a simplified human body model in COMSOL Multiphysics. This paper calculated the induced potential, induced current density and distorted electrical field strength distribution over human body surface and quantificationally analyzed the state of insulation, height of transmission lines and the position impacts of human body below the line on the field quantity.
Key words: transmission line; power frequency electric field; finite element method; human body
參考文獻(xiàn)
[1] 劉振亞. 中國電力與能源[M]. 北京:中國電力出版社,2012.
[2] 李秀英. 交流輸電線下人體暫態(tài)電擊模型和實驗研究[D]. 保定:華北電力大學(xué),2013.
[3] KRAJEWSKI W. Numerical assessment of electromagnetic exposure during live-line works on high-voltage objects[J].IET Science Measurement Technology,2009,3(1):27-38.
[4] KAVYA M, YASHODHARA B, ARUNACHALAM V, et al. Biological effects of electromagnetic interference of high voltage transmission Lines on human body[C]//International Conference on Power Signals Control and Computations,2014,8(10):1-6.
[5] TALAAT M.Charge simulation modeling for calculation of electrically induced human body currents[C]//Electrical Insulation and Dielectric Phenomena 2010 Annual Report Conference,2010:1-4.
[6] 王建華,文武,阮江軍,等. UHV交變電場在人體中感應(yīng)電流計算分析[J]. 高電壓技術(shù),2007,33(5):46-49.
[7] 陳磊. 高壓輸電線路下工頻電場效應(yīng)研究[D]. 上海:上海電力學(xué)院,2013.
[8] 胡宇. 超高壓輸電線環(huán)境中人體電磁場分析[D].沈陽:沈陽工業(yè)大學(xué),2003.
[9] 倪光正,楊仕友,邱捷. 工程電磁場數(shù)值計算[M].2 版.北京:機(jī)械工業(yè)出版社,2010.
[10] 王湛嫻. 生物組織電參數(shù)的微波測量方法研究及應(yīng)用[D]. 南京:南京理工大學(xué),2009.
[11] 晉旭東. 電網(wǎng)電磁環(huán)境評價指標(biāo)及預(yù)測模型的研究[D]. 保定:華北電力大學(xué),2007.
[12] 袁國祥. 低頻電流的人體效應(yīng)研究與應(yīng)用[D]. 武漢:華中師范大學(xué),2006.
[13] 胡白雪. 超高壓及特高壓輸電線路的電磁環(huán)境研究[D]. 杭州:浙江大學(xué),2006.