基于靜電場(chǎng)仿真分析的絕緣套管優(yōu)化設(shè)計(jì)
楊鎮(zhèn)寧1,王廷華1,李春艷2,白維正1,李俊豪1
(1 許昌許繼德理施爾電氣有限公司,河南 許昌 461000;2 大盛微電科技股份有限公司,河南 許昌 461000)
摘 要:為設(shè)計(jì)適用于40.5 kV中壓柜式氣體絕緣金屬封閉開(kāi)關(guān)設(shè)備(C-GIS) 的插入式套管,運(yùn)用靜電場(chǎng)理論建立C-GIS 套管電場(chǎng)的數(shù)學(xué)計(jì)算模型,通過(guò)ANSYS 軟件對(duì)套管在懸浮和接地不同狀態(tài)下仿真了套管的電場(chǎng)分布,并根據(jù)研究結(jié)果對(duì)內(nèi)部結(jié)構(gòu)進(jìn)行了優(yōu)化。結(jié)果表明:內(nèi)屏蔽接地情況下放電幾率更低,屏蔽罩距離中間導(dǎo)電銅棒距離為15 mm,屏蔽罩折邊半徑為1.5 mm時(shí),環(huán)氧樹(shù)脂外表面沿面場(chǎng)強(qiáng)降低了約31%,環(huán)氧樹(shù)脂內(nèi)部最大場(chǎng)強(qiáng)為18.8 kV/mm,絕緣性能得到了明顯提升。
關(guān)鍵詞:插入式套管;ANSYS 軟件;電場(chǎng)分析;結(jié)構(gòu)優(yōu)化
中圖分類號(hào):TM216+.5 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1007-3175(2017)08-0031-04
Insulating Bushing Optimization Design Based on Electrostatic Field Simulation Analysis
YANG Zhen-ning1, WANG Ting-hua1, LI Chun-yan2, BAI Wei-zheng1, LI Jun-hao1
(1 XJ-Driescher Wegberg Electric Co., Ltd, Xuchang 461000, China; 2 Dasheng Microgrid Technology Co., Ltd, Xuchang 461000, China)
Abstract: To design the plug-in bushing suitable for 40.5 kV medium-voltage cabinet-type gas insulation switchgear (C-GIS), this paper used the electrostatic field theory to establish the mathematical calculation model of C-GIS bushing electric field and used the software ANSYS to simulate the bushing electric field distribution under conditions of suspension and grounding. The internal structure was optimized according to the research results. The results show that the probability of discharge is lower in the case of internal shields. The distance from the middle conductive copper rod to the shield is 15 mm. When the shield cover radius is 1.5 mm, the outer surface of epoxy resin is reduced by about 31% along the surface field strength and the maximum field strength inside epoxy resin is 18.8 kV/mm, so that the insulation performance is significantly improved.
Key words: plug-in bushing; ANSYS software; electric field analysis; structure optimization
參考文獻(xiàn)
[1] 袁大陸. 全國(guó)電力系統(tǒng)高壓開(kāi)關(guān)設(shè)備10 年運(yùn)行狀況述評(píng)[J]. 電力設(shè)備,2005,1(1):29-34.
[2] SHAO T, YAN P, LONG K, et al.Dielectric-Barrier Discharge Excitated by Repetitive Nanosecond Pulses in Air at Atmospheric Pressure[J].IEEE Transactions on Plasma
Science,2008,36(4):1358-1359.
[3] 李猛,楊鎮(zhèn)寧,李俊豪,等. 沿面介質(zhì)阻擋放電裝置靜電場(chǎng)影響因素研究[J]. 電工電氣,2016(6):7-11.
[4] VOETEN S J, BECKERS F, Van HEESCH E, et al. Optical Characterization of Surface Dielectric Barrier Discharges[J].IEEE Transactions on Plasma Science,2011,39(11):2142-2143.
[5] 李清泉, 許光可, 房新振, 等. 沿面型介質(zhì)阻擋放電的數(shù)值仿真計(jì)算[J]. 高電壓技術(shù),2012,38(7):1548-1555.
[6] 周澤存,沈其工,方瑜,等. 高電壓技術(shù)[M].3 版. 北京:中國(guó)電力出版,2007.
[7] 金立軍,郭裕,薛義飛,等. 高壓絕緣套管電場(chǎng)分析及結(jié)構(gòu)優(yōu)化[J]. 高壓電器,2015,51(4):7-12.
[8] AN Jiutao, SHANG Kefeng, LU Na, et al. Oxidation of Elemental Mercury by Active Species Generated from a Surface Dielectric Discharge Plasma Reactor[J].Plasma Chemistry and Plasma Processing,2014,34(1):217-228.
[9] JIANG Nan, LU Na, SHANG Kefeng, et al. Innovative approach for benzene degradation using hybrid/packed-bed discharge plasmas[J]. Environmental Science & Technology,2013,47(17):9898-9903.
[10] GB/T 11022—2011 高壓開(kāi)關(guān)設(shè)備和控制設(shè)備標(biāo)準(zhǔn)的共用技術(shù)要求[S].
[11] 包博,謝天喜,彭宗仁,等.750 kV高壓電抗器籠式出線結(jié)構(gòu)均壓特性研究[J]. 電網(wǎng)技術(shù),2011,35(5):232-236.
[12] BIGANZOLI I, BARNI R, RICCARDI C, et al. Optical and electrical characterization of a surface dielectric barrier discharge plasma actuator[J].Plasma Sources Science & Technology, 2013,22(2):025009.
[13] TAKASHIMA K, ZUZEEK Y, LEMPERT W, et al. Characterization of Surface Dielectric Barrier Discharge Plasma Sustained by Repetitive Nanosecond Pulses[J].Plasma Sources Science & Technology,2011,20(5):055009.
[14] 潘浩, 殷慶鐸, 高文勝. 固體絕緣中氣隙尺寸對(duì)局部放電過(guò)程的影響[J]. 高電壓技術(shù),2008,34(3):458-461.
[15] 嚴(yán)璋,朱德恒. 高電壓絕緣技術(shù)[M].3 版. 北京:中國(guó)電力出版社,2015.